Подробное решение методом анализа иерархий маи. Определение приоритетов и пояснения. Сфера образования и научных исследований

Для решения задач подобного рода в аналитическом планировании широко применяется метод анализа иерархий (далее МАИ), разработанный Т.Саати. Сегодня его используют уже повсеместно от риэлтеров, при оценке недвижимости, до кадровиков, при замещении вакантных должностей. Воспользуемся этим методом и мы для выбора хостинг-провайдера.

Первым этапом применения МАИ является структурирование проблемы выбора в виде иерархии или сети. В наиболее элементарном виде иерархия строится с вершины (цели), через промежуточные уровни-критерии (технико-экономические параметры) к самому нижнему уровню, который в общем случае является набором альтернатив (хостинг-провайдеров в нашем случае).

После иерархического воспроизведения проблемы устанавливаются приоритеты критериев и оценивается каждая из альтернатив по критериям. В МАИ элементы задачи сравниваются попарно по отношению к их воздействию на общую для них характеристику. Система парных сведений приводит к результату, который может быть представлен в виде обратно симметричной матрицы. Элементом матрицы a(i,j) является интенсивность проявления элемента иерархии i относительно элемента иерархии j, оцениваемая по шкале интенсивности от 1 до 9, предложенной автором метода, где оценки имеют следующих смысл:

Если при сравнении одного фактора i с другим j получено a(i,j) = b , то при сравнении второго фактора с первым получаем a(j,i) = 1/b.

Опыт показал, что при проведении попарных сравнений в основном ставятся следующие вопросы. При сравнении элементов А и Б:

  • Какой из них важнее или имеет большее воздействие?
  • Какой из них более вероятен?
  • Какой из них предпочтительнее?

Относительная сила, величина или вероятность каждого отдельного объекта в иерархии определяется оценкой соответствующего ему элемента собственного вектора матрицы приоритетов, нормализованного к единице. Процедура определения собственных векторов матриц поддается приближению с помощью вычисления геометрической средней.

Пусть:
A 1 ...A n - множество из n элементов;
W 1 ...W n - соотносятся следующим образом:



A 1

...

A n
A 1 1 ... W 1 /W n
... ... 1 A n
A n W n /W 1 ... 1

Оценка компонент вектора приоритетов производится по схеме:



A 1

...

A n
A 1 1 ... W 1 /W n X 1 =(1*(W 1 /W 2)*...*(W 1 /W n)) 1/n BEC(A 1)=X 1 /СУММА(X i)
... ... 1 A n ... ...
A n W n /W 1 ... 1 X n =((W n /W 1)*...*(W n /W n-1)*1) 1/n BEC(A n)=X n /СУММА(X i)
СУММА(X i)

Приоритеты синтезируются начиная со второго уровня вниз. Локальные приоритеты перемножаются на приоритет соответствующего критерия на вышестоящем уровне и суммируются по каждому элементу в соответствии с критериями, на которые воздействует элемент.

Весьма полезным побочным продуктом теории является так называемый индекс согласованности (ИС), который дает информацию о степени нарушения согласованности. Вместе с матрицей парных сравнений мы имеем меру оценки степени отклонения от согласованности. Если такие отклонения превышают установленные пределы, то тому, кто проводит суждения, следует перепроверить их в матрице.

ИС = (l max - n)/(n - 1)

Для наших матриц всегда l max і n.

Теперь сравним эту величину с той, которая получилась бы при случайном выборе количественных суждений из нашей шкалы, и образовании обратно симметричной матрицы. Ниже даны средние согласованности для случайных матриц разного порядка.

Если разделить ИС на число, соответствующее случайной согласованности матрицы того же порядка, получим отношение согласованности (ОС). Величина ОС должна быть порядка 10% или менее, чтобы быть приемлемой. В некоторых случаях допускается ОС до 20%, но не более, иначе надо проверить свои суждения.

СУТЬ МЕТОДА МАИ Иерархия возникает тогда, когда системы,
функционирующие на одном уровне, функционируют как
части системы более высокого уровня, становясь
подсистемами этой системы. МАИ является процедурой
для иерархического представления элементов,
определяющих суть проблемы. Метод состоит в
декомпозиции проблемы на более простые составляющие
части дальнейшей обработки последовательности
суждений лица, принимающего решения по парным
сравнениям. включая процесс синтеза многих суждении,
получения приоритетности критериев и нахождения
альтернативных решений.

ПОРЯДОК ПРИМЕНЕНИЯ МЕТОДА АНАЛИЗА ИЕРАРХИЙ

Построение качественной модели проблемы в виде
иерархии, включающей цель, альтернативные варианты
достижения цели и критерии для оценки качества
альтернатив.
Определение приоритетов всех элементов иерархии с
использованием метода парных сравнений.
Синтез глобальных приоритетов альтернатив путем
линейной свертки приоритетов элементов на иерархии.
Проверка суждений на согласованность.
Принятие решения на основе полученных результатов.

ПОСТРОЕНИЕ ИЕРАРХИЧЕСКОЙ СТРУКТУРЫ ПРОБЛЕМЫ –ПЕРВЫЙ ШАГ МАИ

Иерархическая структура объединяет цель выбора, критерии,
альтернативы и другие факторы, влияющие на выбор решения.
Построение такой структуры помогает проанализировать все аспекты
проблемы.

ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ ПРИ ПОСТРОЕНИИ ИЕРАРХИЧЕСКИХ СТРУКТУР

Иерархические структуры, используемые в МАИ, представляет собой
инструмент для качественного моделирования сложных проблем.
Вершиной иерархии является главная цель; элементы нижнего уровня
представляют множество вариантов достижения цели (альтернатив);
элементы промежуточных уровней соответствуют критериям или
факторам, которые связывают цель с альтернативами. Существуют
специальные термины для описания иерархической структуры МАИ.
Каждый уровень состоит из узлов. Элементы, исходящие из узла,
принято называть его детьми (дочерними элементами). Элементы, из
которых исходит узел, называются родительскими. Группы элементов,
имеющие один и тот же родительский элемент, называются группами
сравнения.

ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ ПРИ ПОСТРОЕНИИ ИЕРАРХИЧЕСКИХ СТРУКТУР (продолжение)

Родительские элементы Альтернатив, как правило, исходящие
из различных групп сравнения, называются покрывающими
Критериями. Используя эти термины для описания
представленной выше диаграммы, можно сказать, что четыре
Критерия - это дети Цели; в свою очередь, Цель - это
родительский элемент для любого из Критериев. Каждая
Альтернатива - это дочерний элемент каждого из включающих
ее Критериев. Всего на диаграмме присутствует две группы
сравнения: группа, состоящая из четырех Критериев и группа,
включающая три Альтернативы. Вид любой иерархии МАИ
будет зависеть не только от объективного характера
рассматриваемой проблемы, но и от знаний, суждений, системы
ценностей, мнений, желаний и т. п. участников процесса.

РАССТАНОВКА ПРИОРИТЕТОВ

Приоритеты - это числа, которые связаны с узлами
иерархии. Они представляют собой относительные веса
элементов в каждой группе. Подобно вероятностям,
приоритеты - безразмерные величины, которые могут
принимать значения от нуля до единицы. Чем больше
величина приоритета, тем более значимым является
соответствующий ему элемент. Сумма приоритетов
элементов, подчиненных одному элементу выше лежащего
уровня иерархии, равна единице. Приоритет цели по
определению равен 1.0. Рассмотрим простой пример,
поясняющий методику вычисления приоритетов.

ИЕРАРХИЧЕСКАЯ СТРУКТУРА МАИ С ПРИОРИТЕТАМИ, ОПРЕДЕЛЕННЫМИ ПО УМОЛЧАНИЮ (рис. 1)

.

ПОЯСНЕНИЯ К РИС.1

На рис.1 показана иерархия, в которой приоритеты всех
элементов не устанавливались ЛПР. В таком случае по
умолчанию приоритеты элементов считаются
одинаковыми, т.е.все четыре критерия имеют равную
важность с точки зрения цели, а приоритеты всех
альтернатив равны по всем критериями. Др.словами,
альтернативы в этом примере неразличимы. Сумма
приоритетов элементов любого уровня, равна единице.
Глобальные приоритеты альтернатив относительно цели
вычисляются путем умножения локального приоритета
каждой альтернативы на приоритет каждого критерия и
суммирования по всем критериям.

10. РЕШЕНИЕ ЗАДАЧИ С РАЗЫМИ ПРИОРИТЕТАМИ ДЛЯ АЛЬТЕРНАТИВ

Предпочтительная альтернатива – А1

11. РЕШЕНИЕ ЗАДАЧИ С ИЗМЕНИВШИМИСЯ ПРИОРИТЕТАМИ ДЛЯ КРИТЕРИЕВ

Предпочтительная Альтернатива А3

12. АЛГОРИТМ МЕТОДА МАИ

13. 1 ШАГ – ИЕРАРХИЧЕСКАЯ СТРУКТУРА ПРОБЛЕМЫ

14. ОПРЕДЕЛЕНИЕ ПРИОРИТЕТОВ

Второй этап. После иерархического представления задачи
необходимо установить приоритеты критериев и оценить
каждую из альтернатив по критериям, определив наиболее
важную их них.
В МАИ элементы сравниваются попарно по отношению к
их влиянию на общую для них характеристику.
Парные сравнения приводят к записи характеристик
сравнений в виде квадратной матрицы.
Эта матрица обратно симметричная, т.е. имеет место
свойство: aij=1/aji, где индексы i и j - номер строки и номер
столбца, на пересечении которых стоит элемент.

15. ШКАЛА ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

Интенсивность относительной
важности
Определение
1
Равная важность
3
Умеренное превосходство
одного над другим
5
Существенное или сильное
превосходство
7
Значительное превосходство
9
Очень сильное превосходство
2,4,6,8
Промежуточное решение между
двумя соседними суждениями

16. РАСЧЕТ ВЕКТОРА ПРИОРИТЕТОВ

Для определения относительной ценности каждого элемента необходимо
найти геометрическое среднее. С этой целью нужно перемножить n
элементов каждой строки и из полученного результата извлечь корни n-й
степени. Полученные числа ωi i=1÷n необходимо нормировать. Для этого
определяем нормирующий множитель
r =ω 1 +ω2 +ω3 + ………+ ωn. и
каждое из чисел ωi делим на r
q2i = ωi/r, (i = 1,2,3, . . . . . . n).
В результате получаем вектор приоритетов:
q2 = (q21, q22, q23, …..q2n), где индекс 2 означает, что вектор приоритетов
относится ко второму уровню иерархии.
Подобную процедуру проделываем для всех матриц парных сравнений.

17. СОГЛАСОВАННОСТЬ ЛОКАЛЬНЫХ ПРИОРИТЕТОВ

Любая матрица суждений в общем случае не согласована, так
как суждения отражают субъективные мнения ЛПР, а
сравнение элементов, которые имеют количественные
эквиваленты, может быть несогласованным из-за присутствия
погрешности при проведении измерений. Нужен способ
оценки степени согласованности при решении конкретной
задачи.
Метод анализа иерархий дает возможность провести такую
оценку.
.

18. СОГЛАСОВАННОСТЬ ЛОКАЛЬНЫХ ПРИОРИТЕТОВ (продолжение)

Вместе с матрицей парных сравнений мы имеем меру
оценки степени отклонения от согласованности. Когда
такие отклонения превышают установленные пределы
тем, кто проводит решение задачи, необходимо их
пересмотреть.
С этой целью необходимо определить индекс
согласованности и отношение согласованности. Действия
для определения ИС
Определяется сумма каждого j-го столбца матрицы
суждений
sj = а1j + а2j+ а3j + ……… + аn j, j=1,2,3, …. ,n

19. СОГЛАСОВАННОСТЬ ЛОКАЛЬНЫХ ПРИОРИТЕТОВ (продолжение)

Затем полученный результат умножается на j-ю компоненту
нормализованного вектора приоритетов q 2, т.е. сумму суждений
первого столбца на первую компоненту, сумму суждений второго
столбца - на вторую и т.д.
рj= sj·q2j, j=1,2,3, ……, n.
Сумма чисел рj отражает пропорциональность предпочтений, чем
ближе эта величина к n (числу объектов и видов действия в матрице
парных сравнений), тем более согласованы суждения. Вычисляется
Зmax = р1+р2+р3+ ……+рn.
Отклонение от согласованности выражается индексом
согласованности

20. ФОРМУЛА ДЛЯ РАСЧЕТА ИС

21. ОТНОШЕНИЕ СОГЛАСОВАННОСТИ ОС

Для определения того, насколько точно индекс
согласованности ИС отражает согласованность суждений его
необходимо сравнить со случайным индексом (СИ)
согласованности, который соответствует матрице со
случайными суждениями, выбранными из шкалы
1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,
при условии равной вероятности выбора любого из
приведённых чисел. Отношение индекса согласованности ИС
к среднему значению случайного индекса согласованности
СИ называется отношением согласованности ОС. Значение
ОС меньше или равное 0.10 считается приемлемым.

22. РАСЧЕТ ОС

23. СРЕДНИЕ ЗНАЧЕНИЯ СЛУЧАЙНОЙ СОГЛАСОВАННОСТИ

Размер
матрицы
Среднее
Размер матрицы
значение
случайной
согласованности
Среднее
значение
случайной
согласованности
1
0
8
1,41
2
0
9
1,45
3
0,58
10
1,49
4
0,90
11
1,51
5
1,12
12
1,48
6
1,24
13
1,56
7
1,32
14
1,57
15
1,59

24. ОПРЕДЕЛЕНИЕ ПРИОРИТЕТОВ АЛЬТЕРНАТИВ

Для определения приоритетов альтернатив необходимо локальные
приоритеты умножить на приоритет соответствующего критерия на
высшем уровне и найти суммы по каждому элементу в соответствии с
критериями, на которые воздействует этот элемент.
Обозначим через
q3k - вектор приоритетов k-й матрицы, расположенной на третьем
уровне;
q3ki - i-й элемент вектор приоритетов k-й матрицы суждений,
расположенной на третьем уровне;
q2k- k-й элемент вектор приоритетов матрицы суждений,
расположенной на втором уровне;
qj - приоритет j-го элемента третьего уровня.

25. ОПРЕДЕЛЕНИЕ ПРИОРИТЕТОВ АЛЬТЕРНАТИВ (продолжение)

Тогда приоритет j-го элемента третьего уровня
определяется как
q1 = q311·q21 + q321 ·q22 + q331·q23 + . . . + q3n1·q2n
q2 = q312·q21 + q322 ·q22 + q332·q23 + . . . + q3n2·q2n
q3 = q313·q21 + q323· q22 + q333·q23 + . . . + q3n3·q2n
........................................
qn = q31n·q21 + q32n·q22 + q33n·q23 + . . . + q3nn·q2n

26. ПРИМЕР МЕТОДА МАИ

27. УСЛОВИЯ ЗАДАЧИ

Цель – выбрать лучшую альтернативу из заданных трех
А1,А2, А3.
Каждая альтернатива оценивается по трем критериям
К1,К2, К3.

28. ИЕРАРХИЯ ПРОБЛЕМЫ

.
Цель
К1
К2
К3
А1
А2
А3

29. МАТРИЦА ПОПАРНОГО СРАВНЕНИЯ КРИТЕРИЕВ

Цель
К1
К2
К3
К1
1
3
7
К2
1/3
1
3
К3
1/7
1/3
1

30. ПРИОРИТЕТЫ КРИТЕРИЕВ

Находим произведения элементов, находящихся в каждой строке:
1-я строка ω1 = √1·3·7 = 2,759; берутся корни 3-й степени (3- матрицы
2-я строка ω2 = √1/3 ·1·3 = 1,0;
размерность матрицы)
3-я строка ω3 = √1/7·1/3·1 = 0,362.
Проводим нормализацию полученных чисел.
Для этого определяем нормирующий множитель r
r = 2,759 + 1,0 + 0,362 = 4,121.
Вектор приоритетов
q21 = ω1/r = 2,759/4,121 = 0,6697;
q22 = ω2/r = 1,000/4,121 = 0,243;
q23 = ω3/r = 0,362/4,121 = 0,088.
Числа q21, q22 и q23 являются компонентами вектора приоритетов критериев
К1, К2 и К3 соответственно
q2 = (0.,67; 0,243; 0,088).

31. ПРОВЕРКА СОГЛАСОВАННОСТИ

Вычисляем:
s1 = 1+ 1/3 + 1/7 = 31/21; p1 = s1·q21 = 31/21·0,669 = 0,988;
s2 = 3 +1 + 1/3 = 13/3; p2 = s2·q22 = 13/3·0,243 = 1,051;
s3 = 7 + 3 + 1 = 11; p3 = s3·q23 = 11·0,088 = 0,967.
Зmax = р1+р2+р3 = 0,988 + 1,051 + 0,967 = 3,006;
ИС = (Зmax - n)/(n - 1) = (3,006 - 3)/(3 -1) = 0,003;
ОС = ИС/СИ = 0,003/0,58 = 0,005 <0, 1
Суждения экспертов согласованы.

32. МАТРИЦА ПОПАРНЫХ СРАВНЕНИЙ И ПРИОРИТЕТЫ АЛЬТЕРНАТИВ ПО КРИТЕРИЮ К1

К1
А1
А2
А3
Приоритет
А1
1
1/3
7
0,3
А2
3
1
7
0,65
А3
1/7
1/7
1
0,06
ОС=0,120

37. ПОСТАНОВКА ЗАДАЧИ

Нужно произвести выбор секретаря из девушек, подавших резюме.
Отбор девушек происходит по пяти критериям:
1. Знание делопроизводства.
2. Внешний вид.
3. Знание английского языка.
4. Знание компьютера.
5. Умение разговаривать по телефону.
Собеседование прошли четыре девушки.
1. 1. Ольга. 2. Елена. 3. Светлана. 4. Жанна
После собеседования получились следующее описание девушек:

38. ПОСТАНОВКА ЗАДАЧИ (продолжение)

1. Ольга. Приятная внешность. Отличное знание английского языка.
Хорошее знание делопроизводства. Нет навыков работы на
компьютере, посредственное общение по телефону.
2. Елена. Красивая, приятная внешность, хорошее умение общаться
по телефону. Незнание английского языка, нет навыков работы на
компьютере, делопроизводство знает весьма плохо.
3. Светлана. Очень хорошее знание делопроизводства, хорошие
навыки работы на компьютере, достаточно хорошо общается по
телефону. Не очень приятная внешность, посредственное знание
английского языка.
4. Жанна. Приятная внешность, неплохие навыки работы на
компьютере, достаточно хорошее знание английского языка. По
телефону общается плохо, не знает делопроизводство.

39. МАТРИЦА ПОПАРНОГО СРАВНЕНИЯ КРИТЕРИЕВ

Критерии
К1
К2
К3
Внешность (К1)
1
Язык (К2)
5
1
Делопроизводств 5
о (К3)
3
1
Компьютер (К4)
6
3
2
Телефон (К5)
6
3
К4
К5
2
1
2
1

40. ПОПАРНЫЕ СРАВНЕНИЯ АЛЬТЕРНАТИВ ПО КРИТЕРИЮ К1

К1
А1
Ольга (А1)
1
Елена (А2)
4
А2
А3
А4
5
1
6
Светлана
(А3)
1
Жанна (А4) 4
5
2
1

41. ПОПАРНЫЕ СРАВНЕНИЯ АЛЬТЕРНАТИВ ПО КРИТЕРИЮ К2

К2
А1
А2
А3
А4
А1
1
9
7
3
1
3
7
1
5
1
А2
А3
А4

42. ПОПАРНЫЕ СРАВНЕНИЯ АЛЬТЕРНАТИВ ПО КРИТЕРИЮ К3

К3
А1
А2
А1
1
5
7
3
1
7
4
9
1
А2
А3
А4
А3
1
А4

43. ПОПАРНЫЕ СРАВНЕНИЯ АЛЬТЕРНАТИВ ПО КРИТЕРИЮ К4

К4
А1
А1
1
А2
А3
А4
3
9
8
А2
А3
А4
1
7
5
1
4
1

В начале 1970 года американский математик Томас Саати разработал процедуру поддержки принятия решений, которую назвал "Analityc hierarchy process" (AHP). Авторы русского издания перевели это название как "Метод анализа иерархий" (см. книгу: Саати Т. Принятие решений. Метод анализа иерархий. - М.: Радио и Связь, 1993). Этот метод относится к классу критериальных и занимает особое место, благодаря тому, что он получил исключительно широкое распространение и активно применяется по сей день, особенно в США. По этой причине он заслуживает подробного описания в отдельном разделе. Не следует думать, что его выдающаяся популярность объясняется какими-либо важными преимуществами этого метода, по сравнению с другими. Я думаю, что здесь мы сталкиваемся с известным психологическим феноменом: продукт, появившийся первым и удачно удовлетворяющий определенную потребность, захватывает рынок. Более поздние продукты, зачастую более совершенные, часто оказываются неспособны вытеснить удачливого первенца.

На основе этого метода разработаны достаточно серьезные системы поддержки принятия решений, например "Expert choice"

Описание метода выполним на конкретном примере выбора автомобиля.

Альтернативы:

  • Жигули
  • Москвич
  • Волга

Критерии:

  • стиль
  • надежность
  • экономия топлива

В основе АНР все та же линейная свертка, но оценки альтернатив и веса критериев получаются особым образом. Его мы сейчас и рассмотрим.

В модели АНР вместо критериальной таблицы принята иерархия. Представим ее следующим образом:

Уровень 0: Цель - выбрать автомобиль.

Уровень 1: Критерии -

– надежность

– экономичность

Уровней может быть сколько угодно. Например, критерий 1-го уровня "надежность" можно раскрыть уровнем 2 как: 1) надежность двигателя, 2) надежность кузова, 3) надежность ходовой части. Надежность ходовой части можно далее раскрыть уровнем 3, например, как а) надежность тормозной системы, б) надежность подвески и т.д. Мы же, для простоты объяснения, ограничимся Уровнем 1.

Теперь нужно получить оценки каждой альтернативы по каждому критерию. Если существуют объективные оценки, то они просто выписываются и нормируются таким образом, чтобы их сумма была равна единице. Например, если бы нас интересовал критерий "максимальная скорость" и имелись бы соответствующие данные по каждому автомобилю, то нужно было бы составить следующую таблицу.

А как быть с таким критерием как "стиль", для которого не существует объективных оценок? В этом случае процедура Саати рекомендует использовать парные сравнения. Для фиксации результата сравнения пары альтернатив может использоваться, например, шкала следующего типа:

Лицо, принимающее решение (ЛПР), просят попарно сравнить альтернативы. Результат парных сравнений альтернатив для критерия "стиль" записывается в виде таблицы

Простые дроби в клетках трактуются следующим образом. Например, на пересечении строки "Москвич" и столбца "Жигули" записана дробь 4/1. Это выражает мнение ЛПР о том, что "стильность" Москвича" в 4 раза выше, чем "стильность" Жигулей. Здесь вместо приведенной выше шкалы превосходства использовалось понятие "быть лучше в N раз", что также допустимо. Далее простые дроби переводятся в десятичные. Получается такая таблица.

Эта таблица есть не что иное, как таблица результатов парных сравнений (см. раздел "Некритериальное структурирование множества альтернатив"). Поступим с ней так же, как мы поступали в указанном разделе - посчитаем строчные суммы .

Жигули Москвич Иж Волга Сумма по строке
Жигули 1,00 0,25 4,00 0,17 5,42
Москвич 4,00 1,00 4,00 0,25 9,25
Иж 0,25 0,25 1,00 0,20 1,70
Волга 6,00 4,00 5,00 1,00 16,00

Сумма

32,37

Теперь, в отличие от прежнего, нормируем суммы таким образом, чтобы их сумма в свою очередь была равна 1. Для этого просто разделим сумму каждой строки на 32,37 (сумма последнего столбца, т.е. сумма самих строчных сумм). Получим:

Жигули Москвич Иж Волга Сумма
Жигули 1,00 0,25 4,00 0,17 0,116
Москвич 4,00 1,00 4,00 0,25 0,247
Иж 0,25 0,25 1,00 0,20 0,060
Волга 6,00 4,00 5,00 1,00 0,577
Сумма 1,00

В методе Саати полученные таким образом нормированные суммы принимаются в качестве оценок альтернатив по критерию "стильность". Отметим, что полученные оценки отражают исключительно точку зрения конкретного ЛПР. На самом деле, вместо строчных сумм Саати рекомендует использовать собственный вектор матрицы парных сравнений, считая его более точной оценкой. Мы же для простоты ограничимся строчными суммами, которые допустимы, но, с точки зрения Саати, менее точны.

Аналогичным образом получаются веса критериев. Предположим, конкретное ЛПР сравнило попарно критерии с точки зрения их сравнительной важности. Запишем результаты сравнений в виде таблицы.

Как и прежде, утверждение типа "надежность в 2 раза важнее стиля" записывается в виде дроби 2/1.

Применяя к этой таблице описанную выше процедуру, получим веса критериев:

w 1 = 0,32 (стиль), w 2 = 0,56 (надежность), w 3 = 0,12 (экономичность).

Таким образом, мы можем получить как веса критериев, так и оценки альтернатив по критериям:

Жигули - 0,306;
Москвич - 0,272;
Иж - 0,094;
Волга - 0,328.

Затем производится анализ отношения стоимость/эффективность. Используется отношение полученной интегральной оценки к нормированной стоимости. Наилучшей считается альтернатива, для которой указанное отношение максимально .

В рамках нашего примера, сведем все необходимые данные в следующую таблицу:

Стоимость в $

Стоимость
нормированная

Функция
полезности

Отношение
Жигули 4 000 0,24 0,306 1,28
Москвич 3 000 0,18 0,272 1,51
Иж 2 500 0,15 0,094 0,63
Волга 7 000 0,43 0,328 0,76

Сумма

16 000 1,00 1,00

Таким образом, учитывая предпочтения данного конкретного ЛПР, процедура АНР рекомендует ему выбрать Москвич.

Несколько заключительных замечаний

Как я уже отметил в начале этого раздела, исключительно широкий опыт практического использования АНР придал процедуре этакий магический ореол. Не смотря на это, я попробую, по возможности объективно, отметить ее достоинства и недостатки.

Главным достоинством процедуры я считаю тот факт, что веса критериев и оценки по субъективным критериям не назначаются прямым волевым методом (как чаще всего пытаются делать, не сильно задумываясь о корректности такого волюнтаризма), а на основе парных сравнений. При этом, на мой взгляд, остается неопределенным (интуитивным) понятие "превосходство в N раз", но все равно - это большой шаг вперед. Нельзя не отметить, что сравнительно недавно Подиновским сделана попытка точно определить, что означает количественное превосходство одного критерия над другим (см. журнал "Автоматика и телемеханика" №5 за 2000 год).

Другое достоинство - представление критериев в виде иерархии (дерева). Такая структура, если вдуматься, внутренне присуща самому понятию "критерий", т.е. критерии по своей природе иерархичны. Используя одну критериальную таблицу, мы по сути дела упрощаем ситуацию, выполняя оценку либо для верхних уровней дерева критериев, либо для самых нижних (как говорят математики "для листьев дерева"). Большой беды в этом нет, но при оценке сложных альтернатив полезнее мыслить в терминах дерева критериев.

Теперь о недостатках. Первый касается шкалы превосходства. Напомню, что Саати предлагает следующую шкалу:

Теперь представим ситуацию, когда одновременно справедливы следующие 2 утверждения: а) "альтернатива А1 очень сильно превосходит альтернативу А2" и б) "альтернатива А2 очень сильно превосходит альтернативу А3". Что можно сказать о превосходстве альтернативы А1 над альтернативой А3? Логично было бы сделать заключение, что альтернатива А1 превосходит альтернативу А3 в 49 раз (7 умножить на 7)!? Но этот вывод явно не укладывается в рамки заданной шкалы. Как же быть? Процедура АНР не дает ответа на этот каверзный вопрос. Скорее всего, придется удовлетвориться утверждением типа: "альтернатива А1 имеет высшее превосходство над альтернативой А3" и в дальнейшем использовать градацию шкалы "9".

Основной недостаток, на мой взгляд, заключается в том, что парные сравнения используются для получения количественных значений. Серьезные исследования последнего десятилетия приводят к выводу, что корректнее и надежнее использовать парные сравнения для получения только качественных заключений, типа: "критерий К1 важнее критерия К2", не уточняя на сколько важнее.

Метод анализа иерархий, МАИ -- разработан Т. Саати и является методом измерения взаимозависимости в системе, систематической процедурой для иерархического представления элементов доминантной, прямой или обратной иерархии, системно описывающих проблему. В рамках данного метода взаимозависимость измеряется (оценивается) путем сравнения вкладов в вышестоящие узлы иерархии нижестоящих видов деятельности или критериев (подиерархии). Метод предполагает последовательное осуществление процедур:

  • -- декомпозиции проблемы на части (элементы);
  • -- получения экспертных заключений по парным сравнениям, синтеза множества суждений;
  • -- определения относительной степени (интенсивности) взаимодействия элементов в иерархии;
  • -- определения численного выражения интенсивности взаимодействия.

В этом методе предусматривается декомпозиция проблемы на части, ее структурирование и выделение иерархии, содержащей различные главные цели, подцели, критерии или уровней мероприятий, альтернатив, подлежащих оценке и дальнейшая обработка последовательности суждений ЛПР по попарным сравнениям. Данный метод включает процедуры синтеза множественных суждений, оценку приоритетности факторов (критериев) и нахождения альтернативных стратегий (решений) Преимуществом МАИ над большинством существующих методов оценивания стратегических альтернатив является четкое выражение суждений экспертов и лиц, принимающих решения, а также ясное представление структуры проблемы: элементов и взаимозависимостей между ними. Метод анализа иерархий опирается на достаточно простые элементы, которые оцениваются в шкале МАИ в виде суждений экспертов. А затем на основании обработки экспертных оценок определяется относительная степень их взаимного влияния в иерархии.

Для анализа стоимость-эффективность необходимо построить две иерархии: одну для издержек, другую для выгод с одними и теми же альтернативами на нижнем уровне. Критерии для выгод и для издержек не обязательно должны быть противоположными друг другу, но они должны различаться.

Главная цель проблемы является высшим уровнем иерархии. За целью следует уровень наиболее важных критериев. Каждый из критериев может разделяться на субкритерии. За субкритериями следует уровень альтернатив, число которых может быть достаточно большим.

Методика МАИ включает парные сравнения, разработку шкалы для преобразований суждений в числовые значения, использование обратно симметричных отношений, гомогенную кластеризацию иерархических уровней, иерархическую композицию проблемы .

Порядок применения Метода Анализа Иерархий:

  • 1. Построение качественной модели проблемы в виде иерархии, включающей цель, альтернативные варианты достижения цели и критерии для оценки качества альтернатив.
  • 2. Определение приоритетов всех элементов иерархии с использованием метода парных сравнений.
  • 3. Синтез глобальных приоритетов альтернатив путем линейной свертки приоритетов элементов на иерархии.
  • 4. Проверка суждений на согласованность.
  • 5. Принятие решения на основе полученных результатов.
  • 1. Первый шаг МАИ -- построение иерархической структуры, объединяющей цель выбора, критерии, альтернативы и другие факторы, влияющие на выбор решения. Построение такой структуры помогает проанализировать все аспекты проблемы и глубже вникнуть в суть задачи.. Декомпозиция предусматривает структурирование задачи в виде иерархии. В наиболее простом виде иерархия строится с вершины (цель), через промежуточные уровни (критерии) к самому низкому уровню, который обычно является перечнем альтернативных решений. Число уровней иерархии, описывающих конкретную задачу, может быть различно и зависит от специфики задачи. Каждый элемент верхнего уровня является «направляющим» для элементов нижнего уровня иерархии. Это означает, что важность (весовой коэффициент) критериев в описываемой альтернативе рассматривается относительно цели выбора альтернатив. При бинарном сравнении критериев каждый из них оценивается относительно поставленной цели и соответственно определяет уровни взаимного предпочтения.
  • 2. Затем определяется вес элементов на первом уровне иерархии. Для каждого из этих элементов строится матрица векторов-столбцов элементов, находящихся на следующем уровне иерархии. Векторы весов элементов этого уровня используются для взвешивания собственных векторов-столбцов. Перемножением матрицы векторов на вектор-столбец весов рассчитывают общий вектор весов элементов нижнего уровня.

Расчеты необходимо проводить в матричной форме. При этом должно соблюдаться свойство обратной симметрии.

3. Сущность попарных сравнений заключается в сравнении элементов задачи (критерии, альтернативы) попарно по отношению к их воздействию (весу, интенсивности) на общую для них характеристику. Парные сравнения критериев и альтернатив проводятся в терминах доминирования одного из элементов над другим. Эти суждения в шкале МАИ выражаются в целых числах. Если элемент А доминирует над элементом В, то клетка квадратичной матрицы, соответствующая строке А и столбцу В, заполняется целым числом, а клетка, соответствующая строке В и столбцу А, - обратным ему числом. Если А и В эквивалентны, то в обе позиции записывается 1.

Опыт показал, что при проведении попарных сравнений в основном ставятся следующие вопросы. При сравнении элементов А и Б:

  • · Какой из них важнее или имеет большее воздействие?
  • · Какой из них более вероятен?
  • · Какой из них предпочтительнее?

Относительная сила, величина или вероятность каждого отдельного объекта в иерархии определяется оценкой соответствующего ему элемента собственного вектора матрицы приоритетов, нормализованного к единице.

Процедура определения собственных векторов матриц поддается приближению с помощью вычисления геометрической средней.

Пусть: A 1 ...A n - множество из n элементов; W 1 ...W n - соотносятся следующим образом:

Таблица 4 - Парные сравнения

Для получения каждой матрицы требуется n(n - 1)/2 суждений, где n - число критериев, если сравнение проводится среди них, или число альтернатив, если они сравниваются по каждому критерию. При бинарном сравнении альтернатив, особенно при близких оценках их показателей, возможны случаи нарушения требований транзитивности или других ошибок в суждениях, поэтому МАИ предусматривает специальный механизм определения согласованности оценок.

4. Обработка результатов в методике МАИ осуществляется на базе методов матричного анализа с использованием специальных процедур оценки субъективных суждений на основании шкалы сравнений.

Для обоснования шкалы МАИ учитывается, что способность человека производить количественные разграничения можно представить пятью определениями: а) равный; б) слабый; в) сильный; г) очень сильный; д) абсолютный. Можно принять компромиссные определения между отмеченными соседними, когда нужна большая точность. В целом

требуется девять значений, выносимых при сравнении объектов суждений. Использование единицы в начале шкалы соответствует отношению значимости объекта относительно самого себя.

Для определения значений суждений следует начинать сравнение с левого элемента матрицы постановкой вопроса: насколько он важнее каждого из элементов, расположенных вверху (какой более вероятен или какой более предпочтителен). Если сравниваемый элемент важнее того, с которым он сравнивается, то в соответствующую позицию матрицы заносится целое число из шкалы относительной важности; в противном случае берется обратная величина. При сравнения элемента с самим собой отношение равно единице.

5. Для объединения суждений целесообразно найти среднегеометрическое значение путем перемножения соответствующих числовых значений в каждой строке матрицы суждений и извлечении корня степени, равной числу оцениваемых элементов. В результате получаем значение компонент собственного вектора.

Таблица 5 - Синтез локальных приоритетов критериев

Компоненты вектора приоритета

Нормативный вектор

х1=а /s

х2=b /s

х3=c /s

s =а +b +с

  • 1) суммировать элементы каждой строки и нормализовать делением каждой суммы на суммы всех элементов. Сумма полученных результатов равна 1. Первый элемент результирующего вектора будет приоритетом первого объекта (в данном случае первого фактора) и т. д.;
  • 2) суммировать элементы каждого столбца и получить обратные элементы этих сумм. Нормализовать их так, чтобы сумма равнялась единице, разделив каждую обратную величину на сумму всех обратных величин;
  • 3) разделить элементы каждого столбца на сумму элементов этого столбца, т. е. нормализовать столбец. Затем сложить элементы каждой полученной строки и разделить эту сумму на число элементов в строке - усреднение по нормализованным столбцам;
  • 4) умножить п элементов каждой строки и извлечь из произведения корень п-й степени. Нормализовать полученные числа.

В общем случае, когда матрица М[п] содержит элементы согласованности суждений, указанные способы дают различные результаты векторов приоритетов

  • (факторов взвешивания).
  • 6. Синтез приоритетов заключается в разработке глобального критерия оценки альтернативных вариантов решения на базе системы локальных приоритетов. Система локальных приоритетов - это совокупность векторов приоритетов по каждой матрице попарных сравнений. Один вектор приоритетов показывает значимость критериев и определяется по матрице попарных сравнений критериев. Остальные векторы приоритетов показывают значимость (результаты сравнения) вариантов по соответствующему критерию. Вектор приоритетов представляет собой нормализованный собственный вектор матрицы попарных сравнений.

Таблица 6 - Синтез локальных приоритетов альтернатив

Компоненты вектора приоритета

Нормативный вектор

s= а+в+с

7. После определения вектора приоритетов находят оценки согласованности мнений экспертов. Для этого определяется отношение согласованности локальных критериев. Расчет показателей согласованности выполняется следующим образом.

Определяется приближенная оценка главного собственного значения матрицы суждений. Для этого определяется сумма по каждому столбцу суждений, а затем сумма первого столбца умножается на величину первой компоненты нормализованного вектора приоритетов, сумма второго столбца - на вторую компоненту и т. д. Полученные числа суммируются, таким образом, получаемая величина лmах называется оценкой максимума (главного значения матрицы М). Это приближение используется для оценки согласованности суждений эксперта. Чем ближе лmах к n, тем более согласованным является представление в матрице М[n] суждений. Отклонение от согласованности называют индексом согласованности (ИС):

Теперь сравним эту величину с той, которая получилась бы при случайном выборе количественных суждений из нашей шкалы, и образовании обратно симметричной матрицы. Ниже даны средние согласованности для случайных матриц разного порядка.

Таблица 7 - Определение случайной согласованности

Если разделить ИС на число, соответствующее случайной согласованности матрицы того же порядка, получим отношение согласованности (ОС). Величина ОС должна быть порядка 10% или менее, чтобы быть приемлемой. В некоторых случаях допускается ОС до 20%, но не более, иначе надо проверить свои суждения.

8. После проверки согласованности локальных приоритетов определяется глобальный критерий для каждого возможного варианта решений. Приоритеты синтезируются, начиная со второго уровня и вниз. Локальные приоритеты перемножаются на приоритет соответствующего критерия (взвешиваются) вышестоящего уровня и суммируются по каждому элементу в соответствии с критериями, на которые воздействует этот элемент. Это удобно представить в виде матрицы глобальных приоритетов.

Таблица 8 - Матрица глобальных приоритетов

Обобщенные веса или приоритетность объекта при их выборе равны сумме произведений локальных приоритетов каждого объекта по каждому критерию на значимость этого критерия.

Сравнивая полученные значения глобальных приоритетов, определяют рейтинг для всех стратегий. Высокий рейтинг будет соответствовать наибольшему значению глобального вектора приоритета или наиболее предпочтительной альтернативной стратегии. Оценить полезность вариантов выбора конкурентных стратегий можно с помощью нечеткой статистической теории принятия решений.

Основные этапы формирования и выбора конкурентной стратегии организации с использованием аналитических и процедурных методов, в частности, метода анализа иерархий, положенные в основу разработанной методики, представлены на рис. 5.

Достоинством предлагаемой методики выбора конкурентной стратегии является то, что метод МАИ в отличие от других экспертных дает возможность оценивать сразу и качественные, и количественные характеристики посредством перехода к безразмерным показателям. С помощью этого метода можно осуществлять поиск оптимальной конкурентной стратегии в любой рыночной ситуации, так как он позволяет сравнивать все факторы одновременно, определяя значимость путем сравнения попарно каждого с каждым. В результате определяется относительная степень (интенсивность) взаимодействия элементов в иерархии. При этом другие методы позволяют одновременно сравнивать, как правило, только по два фактора.

Рисунок 5 - Этапы формирования и выбора стратегии организации методом анализа иерархий (МАИ)

1

1 Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский ядерный университет «МИФИ»

В статье рассматривается задача выбора метода формирования весов критериев, предназначенных для оценки инновационных проектов в процессе экспертизы. Работа с инновационными проектами связана с риском, поэтому необходимо разрабатывать и использовать методы для управления ими с учетом особенностей этой деятельности. Корректная оценка соотношения важности критериев играет значительную роль в достоверности и показательности конечных результатов экспертизы, на основе которых принимается решение о принятии или отклонении проекта. Одним из популярных методов получения весов является метода анализа иерархий Т.Саати. Авторами предложено использование разработанной модификации данного метода, учитывающей особенности его применения в области управления инновационными проектами. Предлагаемая адаптация метода реализована с целью упрощения его практического использования. В основу модификации метода положено изменение шкалы оценки критериев.

инновационные проекты

экспертиза

метод анализа иерархий

критерий оценки

парное сравнение

2. Сидоренко Е. В., Тихомирова А. Н. Математические способы анализа массивов данных в целях принятия срочных управленческих решений. Пятый Международный конгресс «Роль бизнеса в трансформации российского общества - 2010», Москва, Московская финансово-промышленная академия, 12-16 апреля 2010 г.: Сборник тезисов Пятого Международного конгресса «Роль бизнеса в трансформации российского общества - 2010». - М.: ООО «Global Conferences», 2010. - С. 336-338.

3. Сидоренко Е. В., Тихомирова А. Н. Средства визуализации и отображения взаимосвязей финансовых показателей в системах поддержки принятия управленческих решений // Аудит и финансовый анализ. - 2010. - № 2. - С. 354-357.

4. Саати Т. Принятие решений. Метод анализа иерархий. - М.: Радио и связь, 1993. - 278с.

5. Саати Т. Принятие решений при зависимостях и обратных связях: аналитические сети. - М.: Книжный дом «ЛИБРОКОМ», 2009. - 360с.

Введение

В настоящее время актуальной является проблема повышения эффективности управления инновационными проектами. Поскольку финансированием инновационных проектов в большинстве случаев занимаются различные инвестиционные компании, в каждой из которых есть свои особенности управления, поставленные задачи и история существования, для снижения рисков, связанных с вложением в инновационные проекты, изобретаются свои специфические средства и инструменты управления. Успешная работа по анализу инновационных проектов основана на применении многочисленных методов, применяющихся как при построении общей модели работы с проектами, так и на отдельных этапах процесса прохождения проекта внутри компании.

Одним из наиболее важных этапов работы с проектами в компании является экспертиза этих проектов. В процессе проведения экспертизы заявка, которая или будет отклонена, или станет финансируемым проектом, подвергается разносторонним исследованиям, в которых участвуют эксперты различного профиля.

Экспертиза, как правило, представляет собой процесс, в котором участвует группа высококвалифицированных и узкоспециализированных экспертов, результатом которого является набор экспертных заключений или одно сводное заключение.

Однако для получения информации от экспертов, которая достоверно отображает перспективы и недостатки анализируемого проекта, недостаточно просто найти хороших экспертов. Для получения корректных и показательных экспертных заключений необходимо определить критерии, по которым эксперты должны анализировать заявку.

Различие критериев у разных компаний может объясняться как разным финансовым положением, так и различными приоритетами и целями. По этой причине каждая организация должна самостоятельно формировать свой собственный список важных для нее критериев оценки проекта.

Однако после формирования этого списка перед всеми компаниями встает задача по определению относительной важности и значимости критериев. Для решения этой задачи можно использовать различные методы.

Наиболее распространенным методом является формирование балльной оценки, при котором каждому из критериев ставится определенный балл и относительную важность критериев можно оценить путем сравнения присвоенных им баллов. На сегодняшний день достаточно широкое распространение получил способ формирования весов критериев, построенный на методе анализа иерархии Т. Саати . Главная идея данного метода состоит в парном сопоставлении критериев. Все критерии, предназначенные для анализа проекта, оцениваются путем построения матрицы парных сравнений. Матрица парных сравнений представляет собой матрицу, в которой критерий, расположенный в строке, сравнивается со всеми критериями, указанными в столбцах матрицы (табл.1.). Например, если критерий №1 важнее критерия №2 в a 12 раз, то элемент (1, 2) матрицы равен a 12 . Исходя из этого, главная диагональ матрицы всегда заполнена единицами.

Таблица 1. Матрица парных сравнений

Критерий 1

Критерий 2

Критерий 3

Критерий 1

Критерий 2

Критерий 3

Логично предположить, что если критерий №1 важнее критерия №2 в a 12 a 23 a 12 ·a 23 раз. Однако для матриц, заполняемых реальными людьми, это далеко не всегда так. Это связано с тем, что заполнение матрицы суждений осуществляется экспертом, который может допустить погрешность в определении относительной важности критериев по психологическим причинам. Одной из задач метода иерархии Т. Саати является стремление снизить влияние человеческого фактора на итоговый смысловой результат. Для определения степени корректности данных в заполненной матрице введено понятие меры согласованности матрицы. Для пояснения определения полностью согласованной матрицы приведен ее общий вид (табл.2.).

Таблица 2. Общий вид согласованной матрицы

Для обработки значений полученной матрицы сравнения вводится индекс согласованности, который показывает наличие логической связи между оцененными показателями. Для нахождения индекса согласованности положительной обратно симметричной матрицы (матрица парных сравнений обладает этими свойствами), необходимо найти максимальное собственное значение матрицы и ее размерность .

Индекс согласованности рассчитывается по формуле (1):

где - максимальное собственное значение,

n - размерность матрицы.

Если матрица согласована, то предположение о том, что если критерий №1 важнее критерия №2 в a 12 раз, а критерий №2 важнее критерия №3 в a 23 раз, то критерий №1 должен быть важнее критерия №3 ровно в a 12 · a 23 раз, всегда верно. Для такой матрицы ИС равняется нулю. Однако, как правило, при анализе данных, полученных экспертным путем, матрица не является полностью согласованной.

В разработанном Т. Саати методе анализа иерархий предлагается для парного сравнения критериев использовать шкалу оценки, которая содержит в себе числовые показатели от 1 до 9 и обратные им величины . Значения шкалы 1:9 отображают девять степеней превосходства одного критерия над другим, причем, пять значений являются основными (1,3,5,7,9) и четыре - промежуточными значениями (2,4,6,8). В случае, если рассматриваемый критерий является не более, а менее важным, чем тот, с которым его сравнивают, такое соотношение описывается также посредством девяти степеней сравнения, но представленных обратными величинами значений: 1, 1/2, 1/3, ..., 1/9.

При проведении процедуры сравнения критериев происходит заполнение экспертами соответствующих матриц. От каждого эксперта требуется заполнить только верхнюю часть матрицы (выше главной диагонали), поскольку при использовании данной методики предполагается, что если критериюi при сравнении с критериемj приписывается одно из чисел в диапазоне , то критерию j при сравнении с критериемi приписывается обратное значение.

После заполнения экспертом матрицы парных сравнений, необходимо провести проверку индекса согласованности матрицы. Для этого по формуле (1) рассчитывается ИС матрицы и сравнивается со средним индексом согласованности случайных матриц того же порядка. Соотношение этих индексов называется отношением согласованности (ОС).

На текущий момент для шкалы учеными рассчитаны случайные индексы согласованности (СИ) для обратно симметричных матриц размерностью от 1 до 15 (табл.3), взятые за основу при анализе полученных матриц на предмет согласованности. В своих работах Т. Саати считает приемлемым значение ОС меньшее или равное 0.10 .

Таблица 3. Средние случайные индексы согласованности для матриц разного порядка

Безусловно, использование для анализа важности критериев шкалы от 1 до 9 имеет свои преимущества. Однако, в ряде случаев, особенно, если это касается такого сложного аспекта, как анализ инновационных проектов, данная шкала не только является избыточной по своей сути, но и может стать причиной дополнительной погрешности в процессе выставления экспертом соответствующей оценки при парных сравнениях различных критериев.

На основе анализа мнения практикующих специалистов, работающих в области инноваций, которым приходится часто сталкиваться с проведением различного рода сравнений, выявлено, что целесообразным является использование более категоричной шкалы 1:5 (табл. 4). Это связано со спецификой области, для работы в которой производится адаптация метода анализа иерархий. В данной статье речь идет о сравнении инновационных проектов, при этом метод парного сравнения объектов Т. Саати применяется для определения весов критериев, по которым проекты впоследствии будут сравниваться. Поскольку сформированные веса критериев могут значительно повлиять на решение, принимаемое по проекту, необходимо, чтобы шкала, с помощью которой определяются в результате веса, была однозначной и конкретной.

Таким образом, можно сделать вывод о том, что использование шкалы 1:5 является на практике более удобным, поскольку каждое численное значение имеет ярко выраженную смысловую трактовку. Кроме того, сравнение критериев посредством такой шкалы будет характеризоваться большей степенью уверенности эксперта. Это важный факт, так как в данном случае речь идет о работе с инновациями, а значит, ситуация осложняется различными рисками. При выборе каких-либо методов для организации работы с инновационными проектами, имеющими априори большую степень неопределенности, необходимо, во избежание накопления суммарной ошибки, выбирать методы, которые сами в себе имеют как можно меньшую степень неопределенности.

Кроме того, более четкое определение признаков, которое дает шкала 1:5, позволяет конкретизировать ситуацию без значимой потери точности, с одной стороны, и со значительным повышением комфортности использования этой шкалы - с другой стороны. В связи с выявленной потребностью шкала от 1 до 9 была заменена шкалой от 1 до 5. Для данной шкалы были описаны значения каждого из выставляемых баллов (табл.4).

Таблица 4. Модифицированная шкала относительной важности

Интенсивность относительной важности

Определение

Объяснение

Несравнимы

Эксперт затрудняется при сравнении

Одинаковая важность

Равная степень важности критериев i иj

Не существенная степень важность

Критерий i несущественно важнее критерия j

Существенная степень важность

Критерий i существенно важнее критерия j

Промежуточные значения между двумя соседними значениями шкалы

Ситуация, когда необходимо компромиссное решение, 2 - критерий i имеет слабое преимущество перед критерием j , 4 - критерий i имеет заметное преимущество перед критерием j

Обратные величины приведенных выше чисел

Если критерию i при сравнении с критерием j приписывается одно из приведенных выше чисел, то критерию j при сравнении с критериемi приписывается обратное значение

Обоснованное предположение

Для обеспечения более комфортных условий сравнения для экспертов был введен дополнительный пункт шкалы - нулевое значение. Эксперт имеет возможность поставить 0 при сравнении двух критериев, если считает, что критерии несравнимы или сравнение лично для него крайне затруднительно.

Большая комфортность при использовании шкалы 1:5 объясняется легкостью в различии оценок критериев (рис.1). Три значения шкалы: 1, 3 и 5 выступают в виде главных при оценке относительной важности, а 2 и 4 - являются компромиссными, промежуточными вариантами выбора.

Рис. 1. Ключевые деления шкалы 1:5

Поскольку шкала была изменена, для корректной проверки согласованности соответствующих матриц необходимо провести расчет индексов согласованности случайных матриц данного типа. Для решения этой задачи для выбранной шкалы было сгенерировано по 100 случайных матриц порядка 3, 4 и 5. Полученные в результате расчетов СИ обозначены в таблице 5.

Таблица 5. СИ по шкале оценки от 1 до 5

В качестве примера для расчета отношения согласованности для матриц порядка 3, сформированных по шкале 1:5, был проведен анализ допустимого уровня согласованности матриц. Пороговым значением для шкалы 1:9 является уровень в 10 %. Для установления порогового значения при использовании шкалы 1:5 было проведено моделирование, заключающееся в анализе значений ОС матрицы при различных отклонениях экспертных оценок от оценок, соответствующих полностью согласованной матрице.

В рамках моделирования проводился анализ матриц со следующими отклонениями:

  • увеличение одной величины на 1 шаг;
  • уменьшение одной величины на 1 шаг;
  • увеличение двух величин на 1 шаг;
  • уменьшение двух величин на 1 шаг;
  • увеличение трех величин на 1 шаг;
  • уменьшение трех величин на 1 шаг;
  • увеличение одной и уменьшение другой величины на 1 шаг;
  • увеличение двух величин и уменьшение одной величины на 1 шаг;
  • увеличение одной и уменьшение двух величин на 1 шаг;
  • увеличение 1 величины на 2 шага;
  • уменьшение 1 величины на 2 шага.

Для каждой размерности матрицы был проведен аналогичный анализ для пяти различных исходных согласованных матриц. В результате проведенного моделирования было получено значение 12.7 %, которое соответствует максимальному отношению согласованности при отклонении мнения эксперта на один шаг от значения полностью согласованной матрицы. Значение 12.7 % было выбрано в качестве порогового значения допустимой согласованности матрицы, составленной по шкале 1:5.

Пороговое значение 12.7 % является обоснованным для матрицы размерностью 3. Для матриц другой размерности пороговое значение ОС должно быть рассчитано не только с учетом анализа отклонений матрицы от полностью согласованной, но и с учетом того, что при сравнении большего количества критериев ошибка эксперта может возрасти.

Таким образом, с учетом особенностей, присущих повседневной практической деятельности при оценке инновационных проектов, была проведена модификация метода Т. Саати. Основная цель модификации - повышение эффективности метода при его применении узкопрофильными специалистами для оценки перспективности и технической реализуемости инновационных проектов. Использование данной модификации метода определения относительной важности критериев при оценке проекта может повысить эффективность и достоверность такого этапа работы с инновационными проектами, как подготовка к проведению экспертизы. Данный момент является крайне важным, поскольку именно по установленным на этом этапе критериям происходит дальнейшая оценка проекта, а корректное соотношение критериев между собой по степени важности позволяет составить верное заключение по проекту.

Рецензенты:

  • Киреев Сергей Васильевич, д.ф.-м.н., профессор, декан факультета повышения квалификации и переподготовки кадров, Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет МИФИ» (НИЯУ МИФИ), г. Москва.
  • Гусева Анна Ивановна, д.т.н., профессор, профессор кафедры «Экономика и менеджмент в промышленности», Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет МИФИ» (НИЯУ МИФИ), г. Москва.

Библиографическая ссылка

Тихомирова А.Н., Сидоренко Е.В. МОДИФИКАЦИЯ МЕТОДА АНАЛИЗА ИЕРАРХИЙ Т. СААТИ ДЛЯ РАСЧЕТА ВЕСОВ КРИТЕРИЕВ ПРИ ОЦЕНКЕ ИННОВАЦИОННЫХ ПРОЕКТОВ // Современные проблемы науки и образования. – 2012. – № 2.;
URL: http://science-education.ru/ru/article/view?id=6009 (дата обращения: 27.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»