3д принтеры по металлу. SS - Нержавеющая сталь. Основные характеристики изделий из металлического порошка

Металлические порошки - самый прочный материал для 3D-печати. Изделия, созданные на металлических 3D-принтерах, по многим параметрам превосходят аналоги, произведенные с помощью традиционных технологий (литье, прокатка и др.).

Основные характеристики изделий из металлического порошка

  • Повышенная прочность
  • Любая геометрия
  • Большой выбор металлов и их сплавов
  • Шероховатые поверхности
  • Отсутствие напряженности металла
  • Любая пост-обработка
  • Материал поддержки используется для повторной печати

Технологии 3D-печати металлом

Selective Laser Melting (SLM) - селективное сплавление порошкового материала с помощью лазера, самая популярная технология 3D-печати металлами. Используется в 3D-принтерах по металлу компаний SLM Solutions и Realizer . Подробнее о технологии SLM читайте .

Direct Metal Printing (DMP) - аналог технологии SLM, использующийся в 3D-машинах серии ProX компании 3D Systems .

Electron Beam Melting (EBM) - спекание металлических порошков под воздействием электронно-лучевой пушки. Применяется в 3D-принтерах компании Arcam .

Виды металлических порошков для 3D-печати

Титан. Высокопрочный биосовместимый материал, применяемый в медицине, авиастроении, машиностроении, промышленности. .

Инструментальная и нержавеющая сталь. Различные сплавы стали - самые распространенные материалы для 3D-печати. Они служат для решения широкого круга задач в различных сферах, устойчивы к корозии, обладают повышенной прочностью и износоустойчивостью. .

Алюминий и его сплавы. Легкий сплав, обладающий более низкой плотностью, чем другие металлы для 3D-печати. Обладает хорошими легирующими свойствами и электропроводностью. Используется в автомобилестроении, аэрокосмической отрасли, промышленности. .

Никелевые сплавы. Материал с прекрасной механической прочностью и свариваемостью. Устойчив до 7000°С. Используется в авиации, энергетике, производстве инструментов и других отраслях. .

Другие сплавы и металлы. 3D-принтеры могут использовать для печати широкий набор материалов. По вашему техническому заданий машина может быть настроена для работы практически с любыми другими типами металлов: вольфрамом, никеле-кадмиевыми сплавами, железом, медью и т.д.

Заказ тестовой 3D-печати из металла

Вы можете заказать тестовую печать вашего изделия из интересующего материала в компании Globatek.3D. Так вы сможете оценить физические свойства, точность и стабильность работы нужного 3D-принтера. Для заказа просто позвоните по телефону +7 495 646-15-33 или пришлите 3D-файл на почту .

3D-принтеры, печатающие металлом

SLM Solutions

Фото Desktop Metal

Компания Desktop Metal создала новую технологию и первый компактный принтер для 3D-печати металлом. Первые поставки систем начнутся уже осенью этого года. Один принтер будет компактным, благодаря чему его можно будет разместить даже на столе.

В 2015 году четыре профессора из MIT основали компанию Desktop Metal. Среди них был и знаменитый Эмануил Сакс – тот самый изобретатель, который и придумал в 1989 году первый 3D-принтер. В прошлом году они в первые представили устройства для печати металлом. Всего их на данный момент будет два. Компактный комплект DM Studio по цене 120 000$ и DM Production (420 000$), предназначенный для использования промышленными компаниями. Production способна печатать 8200 кубических сантиметров изделия за час, что в 100 раз быстрее нынешних способов изготовления.

Технология

Суть заключается в использовании аддитивной технологии 3D-печати, позволяющей выращивать заготовку из металлического порошка с использованием связующего вещества. Один слой печати по толщине равен человеческому волосу. После нанесения слоя принтер его подсушивает и наносит следующий слой за слоем.


После того, как заготовка готова, она для спекания помещается в миниатюрную плавильную печь, использующую дополнительно микроволны, благодаря которым ускоряется процесс и сама деталь существенно усиливается. Сама заготовка не плавится, так как нагрев происходит при температуре ниже точки плавления металла, во время которой из детали удаляется связующее вещество.

Видео как работает такой принтер:

Оба устройства способны использовать на данный момент чуть более 200 сплавов.

Почему технология 3D-печати от DM является подрывной? Минусом всех подобных других устройств является то, что скорость печати металлом очень низкая и сам процесс настолько неудобный, что их использование в промышленных целях было нецелесообразным. Причем детали, получаемые из них, чаще всего, либо просто не подходят для использования в каких-то серьезных целях, либо еще и требуют существенной дополнительной обработки.

Пример работы 3D-принтера ExOne:

ExOne до появления принтеров от DM считался одним из самых передовых и инновационных.

Также существуют и другие технологии печати, путем выращивания детали из расплава, а также наплавки, но точность их очень низкая и, как говорилось выше, требует последующей обработки.

Благодаря своим инновациям, подтвержденным 138 патентами, компании Desktop Metal удалось в октябре 2015 года привлечь инвестиций размером в 97 000 000$ от Google, BMW Group, GE, Lowe’s, NEA, Kleiner Perkins Caufield & Byers, Lux Capital, Saudi Aramco и лидера в сфере 3D-печати Stratasys.

Конструкция, которая позволяет методом послойного нанесения слоев металла создавать всевозможные детали, называется 3D принтер по металлу.

Для начала, необходим будет компьютер, на который устанавливается специальная программа, помогающие создать виртуальное изображение предмета в трех проекциях, поделенное на цифровые слои.

В 3D принтер по металлу загружают порошок либо металл, которые в процессе работы разогреваются и выдавливаются из головки устройства, нанося слои.

Затем наносится следующий, пока изделие не будет готовым.

3D принтер по металлу позволяет создавать все, что угодно. При этом, получаемые изделия вполне выдерживают конкуренцию с создаваемыми обычными методами.

Отличием 3D технологии считается многофункциональность. Использоваться 3D принтер, печатающий металлом, может любителями, а также профессионалами.

Спектр применения очень разнообразен:

Промышленные образцы 3D принтера для печати металлом справятся легко даже с созданием ракетных двигателей, которые от оригинала практически невозможно отличить. Это подтверждает, что пригодна данная технология для изготовления на принтере всевозможных форм и габаритов металлических предметов.

Разнообразие технологий

Распространение в наше время получили два вида технологий – струйная и лазерная. Объединяет их то, что «выращивание» предмета осуществляется путем последовательного создания слоев. Происходит это до тех пор, пока не получится на выходе принтера необходимый объект (технология аддитивная).

Но, разработчики принтеров на этом не остановились и работают над разработкой новых способов печати.

Струйная

Это наиболее старая технология. Важно знать, что ее применение подходит для композитных материалов, т.е. смеси полимеров и металлов. С ее помощью можно формировать на принтере самой различной формы трехмерные объекты.

Порошок, смешивающийся с полимерами, выступает в роли связующего, позволяя во время процесса сырью связываться. Получаемые этим методом детали не относятся к полностью металлическим.

В некоторых случаях предмет, созданный принтером из композита, переплавляется в металлический, но из-за пористости прочность такого изделия невысокая. Чтобы ее увеличить изделия пропитывают металлом (в частности бронзой). Из-за низких прочностных показателей, используется метод в основном в сувенирной промышленности.

Метод ламинирования

Этот способ состоит в поочередном нанесении на платформу металлических листов малой толщины. Формирование изделия заключается в склеивании фольгированных листов.

Объекты, получаемые рассматриваемым способом, нельзя на 100% считать металлическими, поскольку для создания целостности их используют клей.

К достоинствам способа относят:

    идентичность получаемого 3D предмета и макета;

    экономичность.

Применяют способ в макетировании.

Послойное наплавление

Исходным сырьем при создании предметов данным методом являются металлы с низкой температурой плавления. Металлы и их сплавы с высокой температурой плавления не применяют.

До полировки и после

Поэтому разработчики используют, как и при печати струйной, композитные материалы — BronzeFill, к примеру, состоящий из бронзового порошка и термической пластмассы. Предметы, изготовленные из него, отличаются близкой схожестью с оригинальной деталью и хорошей способностью к шлифованию.

Создаваемые по этой технологии объекты, тоже не относятся к цельнометаллическим.

Способ широко используется в промышленных масштабах для получения экранирующих материалов и необходимых для изготовления печатных плат проводников, позволяющих развивать эту область.

Плавка электронно-лучевая и лазерная

Детали, создаваемые методом плавки с помощью лазера, получаются хорошего качества, но, несмотря на это, используют их не широко из-за ухудшающей прочность пористости. Не могут применяться они там, где необходимо противостоять высокой нагрузке.

Изменить ситуацию можно, применив лазерное спекание, отличающееся от лазерной плавки большей температурой обработки. Оно дает возможность получения на принтере однородных изделий, слабо отличимых от аналогичных, полученных литьем.

Другим похожим способом является электронно-лучевое плавление. Принтеры для него производит фирма Arcam (Швеция).

Технология мало отличается от предшествующей, но имеет такие особенности:

    высокая скорость манипулирования электронным пучком;

    отсутствие зеркальных электромеханических комплексов.

Видео: печать деталей способом селективного лазерного спекания

Использование расходников, представленных металлами и их сплавами, позволяет получать металлические 3D предметы, печатаемые небольшими партиями и имеющие с оригиналами близкое сходство. Метод не нуждается в развитой инфраструктуре, благодаря чему является ресурсно- и финансово экономичным.

Применяют его достаточно активно в ортопедии для изготовления протезов, а также форсунок к реактивным двигателям и турбин.

Аддитивное лазерное построение (CLAD)

Используют эту технологию чаще для 3D ремонта, чем для печати трехмерной. Предназначена она только для промышленного использования.

Суть ее состоит в нанесении порошка на дефектные места, который затем подвергается обработке лазером.

Перемещаться головка способна в пяти направлениях, а также вращаться в вертикальной плоскости и изменять угол наклона, что открывает большие возможности.

Использовать CLAD возможно для восстановления крупных объектов, в которых обнаружен брак. Его успешно применяют во Франции для ремонта авиамоторов.

Электронно-лучевая плавка произвольная (EBF3)

Она популярна у сотрудников НАСА, поскольку с порошками в невесомости работать невозможна. Их заменили металлическими нитями. Для наплавления слоев потребуется электронно-лучевая пушка.

Испытания в невесомости

Детали для ремонта создаются прямо на орбите, поэтому отпадает необходимость доставлять их с Земли.

Средняя цена

Рынок сегодня заполнен большим ассортиментом принтеров 3D для дома и производства. Среди них немало 3D принтеров по металлу. Цена наиболее качественных конструкций для использования промышленного равна нескольким десяткам тысячам американских долларов, поэтому позволить себе их могут только крупные компании.

Понятно, что 3D принтер для дома имеют меньшую цену – порядка 10-15 тысяч рублей .

Можно, безусловно, найти и менее дорогие 3D принтеры, печатающие металлами, но соответственно с более низким качеством получаемых изделий.

Понимая это, разработчики работают над совершенствованием 3D принтеров по металлу, купить которые можно будет в ближайшее время.

Видео струйной 3D печати технологии по металлу:

Где купить 3Д принтеры и по каким ценам

Первая модель для построения изделий использует расплавленную нить полимерную из пластика ABS +, которая гарантирует невероятную точность и прочность готовой продукции. Чтобы получить красочное изделие, выбирают из девяти расцветок термопластика.

У конструкции 2 режима, которые отличаются толщиной образуемого слоя.

Это компактное устройство открытой конструкции, которое подойдет для индивидуального использования – дома, в офисе, школе и т.д. С его помощью создавать можно игрушки, аксессуары для домашнего пользования, макеты и пр. Модель относится к самой дешевой, но обеспечивает завидное качество и детализацию.

Малый вес – еще одно преимущество принтера. Составляет он 3,6 кг.

Еще один доступный по цене настольный девайс для использования в офисах, используемый для разнообразных целей. Для печати, как и первая модель, он использует ABS нить. Получаемые объекты характеризуются достаточно высокой механической устойчивостью и точностью, отличной визуализацией.

Подойдет новичкам и опытным специалистам.

Бюджетная миниатюрная модель для дома и школы, поставляется почти в собранном виде, поэтому к работе приступать можно сразу после распаковки.

Привлекательная и надежная модель, отличающаяся простой эксплуатацией, небольшими размерами. Объекты создаются из той же нити, что и первые — ABS. Способна формировать любой конфигурации фигуры с внутренними полостями и геометрией. Используется успешно не только в офисах, но и в промышленных производствах.

Заключение

Специалисты уверены, что за печатью 3D будущее и она может вытеснить существующие методы создания прототипов. Ученые усердно занимаются разработкой принтеров для металлургической, строительной, пищевой промышленностей, которые смогут улучшить качество нашей жизни, позволив каждому заняться производством металлических конструкций на дому.

3D печать — это одно из самых сложных направлений в сфере современных технологий и является важным элементом в области современного производства. С помощью принтеров, осуществляющих трехмерную печать, открываются широкие возможности, в том числе для предпринимательской деятельности. Имеются все предпосылки для того, что такая технология в недалеком будущем заменит стандартные методы производства: литье, ковка и т. п. Данная статья ответит на вопросы: что такое 3D печать по металлу и каковы главные направления развития этой технологии.

Это специальное устройство, которое дает возможность создавать металлические изделия и наносить специальные слои на формирующиеся детали. То есть формирование объекта принтером происходит послойно.

Первым делом при помощи компьютера и специальной программы создается виртуальная модель в трех плоскостях, разделенная на цифровые слои. В процессе печати объекта, из головки принтера на печатающую платформу выделяется жидкий металл или порошок, тем самым создавая начальный слой. Далее автоматически формируется следующий слой металла. Итак, слой за слоем, создается готовое изделие.

Данное устройство дает возможность для изготовления самых разнообразных изделий. Используемые современные разработки очень конкурентоспособны на фоне стандартных методик производства металлических объектов.

Какие работы могут выполняться

Технология 3D печати является многофункциональной. Ее применяют в своей деятельности как профессионалы, так и обычные любители. Спектр применения довольно обширен: изготовление сложных по форме металлических изделий, имитирование обычной ковки. Для этих целей не нужно привлекать дополнительное оборудование и устройства.

промышленный 3Д принтер

Промышленный 3D принтер способен напечатать даже двигатель для ракеты, который будет трудно отличить от оригинала, изготовленного стандартным способом. Отсюда следует вывод – эта технология может изготавливать почти любые металлические предметы.

Технологии печати

На данный момент используется всего 2 основных способа печати изделий из металла: струйная и лазерная технология. В обоих случаях происходит последовательное нанесение слоев металла (аддитивная технология), пока на выходе не получится требуемый объект. Но технологии не стоят на месте, разработчики развивают новые методы печати.

1. Струйная печать

Эта разновидность печати одновременно является и самой ранней и успешной в аддитивной технологии. Но здесь нужно четкое понимание того, что данный подход может применяться лишь для создания композитных (смесь металла с полимерами) деталей из-за специфики производства. Такой способ формирует любой трехмерный объект из порошковых материалов. Порошок смешивается с полимерами, которые помогают сырью связываться во время печати. Поэтому изготавливаемые по данной технологии изделия нельзя считать полностью металлическими.

Существует вариант, при котором композитный предмет переплавляется в цельнометаллический. Из-за пористости, данные изделия не обладают хорошей прочностью. Для ее повышения можно прибегнуть к пропитке модели бронзой или другим металлом.

Из-за невысокой прочности изделий данную технологию используют, прежде всего, при изготовлении сувениров.

2. Печать методом ламинирования

В данной технологии тонкие листы металла постепенно наносятся на платформу. Формирование происходит при помощи резки листов (металлической или лазерной) и их склеивания, в результате чего получается 3Д модель. В качестве расходного материала использоваться фольга.

Полученное изделие не является на 100 процентов металлическими. Это объясняется тем, что для придания целостности предмету применяется клей.

Главным достоинством является экономичность и близкое сходство получаемых деталей с макетом. Часто данный подход применяют для создания макетов.

3. Наплавка слоями

В данном случае в качестве сырья используются легкоплавкие металлы. Но чистые металлы или сплавы не используются, поскольку применение такого сырья влечет понятные проблемы из-за необходимости работы принтера при высоких температурах.

Учитывая это, разработчики остановились на композитных материалах, подобных тем, что используются в струйной печати. Например, BronzeFill – материал из термической пластмассы и бронзового порошка. Выполненные на его основе предметы, имеют высокую схожесть с оригиналом и податливы к шлифовке. Данные изделия нельзя считать цельнометаллическими, и их характеристики ограничены используемые в сырье композитами.

Этот метод активно применяется в промышленности. С его помощью можно создавать проводники и экранирующие материалы, что может сделать значительный прорыв в печати электронных плат.

4. Выборочная лазерная и электронно-лучевая плавка

Несмотря на хорошее качество элементов, изготавливаемых при помощи лазерного плавления, их использование не столь обширно из-за значительной пористости получаемых изделий, и следовательно, их малой прочности. Данная продукция может применяться в некоторых отраслях, но совершенно не может использоваться там, где требуется противостоять большим нагрузкам.

Проблему решает замена лазерного спекания на лазерную плавку, которая отличается лишь температурной обработкой. Последняя технология активно используется в области получения однородных деталей, которые почти не отличаются от литых аналогов.

Схожий метод имеет электронно-лучевое плавление. Такие принтеры поставляет шведская компания Arcam. Данная технология почти как и предыдущая, но имеет ряд преимуществ: отсутствие электромеханических зеркальных комплексов и высокоскоростная манипуляция с электронными пучками. По остальным критериям она мало превосходит предшественника.

На видео представлена презентация печати методом селективного лазерного спекания.

Использование различных металлов и сплавов дает возможность для создания мелких партий изделий из металла, аналогичных оригиналу. Здесь не нужна развитая инфраструктура, за счет чего достигается существенная финансовая и ресурсная экономия. Технология активно применяется при изготовлении ортопедических протезов, газовых турбин и даже форсунок для реактивных двигателей.

5. Прямое лазерное аддитивное построение (CLAD)

Это не совсем технология для трехмерной печати, а скорее для 3D ремонта. Она применяется только в промышленности из-за узкого спектра применения.

Принцип работы заключается в нанесении порошка на дефектные участки детали с дальнейшим лазерным наплавлением.

Головка может перемещаться по пяти осям, меняя угол наклона и вращаясь относительно вертикальной плоскости. Это позволяет работать под любыми углами.

Данную технологию можно задействовать для ремонта крупных изделий, в том числе при обнаружении в них брака. К примеру, во Франции компания Beam использует данный подход для ремонта авиадвигателей и других крупных изделий.

Технология CLAD может использовать в работе герметичную камеру с инертной атмосферой, что необходимо для работы с металлами, которые поддаются оксидации (титан и т.п.).

6. Произвольная электронно-лучевая плавка (EBF3)

Данная технология нашла применение у специалистов НАСА. Так как в невесомости не представляется возможным работа с порошками, вместо них используются металлические нити. Работа аналогична послойной 3Д печати, но происходит с применением электронно-лучевой пушки для плавки.

Данная технология поможет создавать запасные детали на орбите, что избавит от необходимости их доставки с Земли.

Стоимость 3D принтера

Сейчас на рынке представлено большое количество 3D принтеров, позволяющих печатать трехмерные объекты из металла. Наиболее качественные промышленные принтеры могут стоить несколько десятков тысяч долларов США. Конечно, есть и более дешевые образцы, но их качество печати соответственно хуже. При этом разработчики постоянно совершенствуют свою продукцию, и следует ожидать, что в ближайшем будущем будут появляться все более дешевые принтеры, позволяющие печатать все более качественные изделия.

На видео представлена струйная технология 3D печати по металлу.

Крайне редко в индустрии 3D-печати появляется 3D-принтер, принцип действия которого строится на абсолютно новом подходе. Сегодня мы можем печатать изделия из сотен различных материалов, но если речь заходит о металлах, цены на 3D-принтеры становятся просто заоблачными. «Металлические» 3D-принтеры могут себе позволить только очень крупные компании, потому что их стоимость начинается от 250000 долларов. Но прогресс не стоит на месте, и когда-нибудь любой желающий сможет приобрести такое чудо техники и печатать металлические изделия, не выходя из дома.

Первые шаги уже сделаны. Взять, например, проект аргентинского инженера Гастона Аккарди. Аккарди увлекается 3D-печатью уже более 12 лет и одним из первых привнес эту технологию в Южную Америку. Как-то у него появилась идея сделать абсолютно новый 3D-принтер, но в связи с напряженным графиком он откладывал работу над проектом в течение пяти лет. И вот пару недель назад ему, наконец, удалось выкроить время.

«Это устройство представляет собой гальванический 3D-принтер для работы с металлом, – рассказывает Аккарди. – Послойное наплавление металла в нужных местах происходит за счет электрохимической реакции. Можно использовать самые разные металлы, а также сплавы, проводящие материалы и полупроводники. Но что самое главное – это очень дешевый метод».

Под «дешевым» Аккарди подразумевает «очень дешевый». Дело в том, что он собрал рабочий прототип принтера всего за… 2 доллара (нет-нет, это не опечатка). Так как же работает этот уникальный 3D-принтер?

Итак, гальванизация – это процесс покрытия одного металла другим путем электролиза. В 3D-принтере Аккарди нет и намека на технологию лазерного спекания, стереолитографии или наплавления филамента. Вместо этого здесь используется самая обычная металлизация электрическим способом.
Фактически гальванизация становится возможной при наличии источника питания и двух полюсов. Одно поле подключается к детали, которую вы хотите покрыть металлом, другое – к металлу, который будет электроосаждаться. Также вам потребуется электропроводящий раствор, обычно для этих целей используют серную кислоту или лимонный сок. Если гальванизация производится медью, то для достижения наилучших результатов ее нужно просто добавить в раствор.

«Через несколько минут после того как вы начали пропускать ток через раствор, медь начинает покрывать изделие, – объясняет Аккарди. – Оба электрода, которые вы используете, обязательно должно быть электропроводящими».

Принцип действия 3D-принтера Аккарди строится именно на методе гальванизации, однако он еще усовершенствовал его. Он взял маркер, вытащил из него стержень и залил в него раствор кислой меди. Потом он завел одно поле (медную электродную проволоку) внутрь маркера. Под воздействием электрического тока ионы меди выходят из кислоты в маркере, проходят через его кончик и оседают на поверхности платформы для печати, которая покрыта проводящим серебром и подсоединена к другому полю. В результате получается слой металла.

«Фактически вы можете писать медью, – рассказывает Аккарди. – И если вы продолжаете писать одни и те же буквы, снова и снова, они постепенно вырастают в высоту и становятся объемными».

Маркер можно наполнить практически любым проводящим и полупроводящим металлом, будь то титан, золото, железо, платина, никель, хром или сплавы вроде бронзы. Аккарди сказал, что он купил 4-осевой станок с ЧПУ и планирует установить на него свою гальваническую систему. В результате у него должно получиться что-то вроде обычного FFF 3D-принтера, только вместо расплавленного пластика здесь будет использоваться металл.

Хотя прототип обошелся Аккарди всего в 2 доллара, он ищет инвесторов, которые помогут ему создать более современное устройство, достойное внимания покупателей.

«Я изобретатель, работающий в самых разных направлениях, – говорит он. – Жизнь похожа на пазл. Вы должны найти столько кусочков головоломки, сколько сможете, а потом начать складывать их».

Аккарди считает, что ему хватит 100000 долларов для реализации своей идеи и последующего запуска принтера в производство и продажу. Если у него все получится, то стоимость 3D-принтера будет колебаться в районе 1000-2000 долларов.

В планах у Аккарди собрать устройство с несколькими маркерами, которое сможет одновременно печатать разными металлами. Также ему хочется попробовать наполнить один из маркеров проводящей серебряной краской, чтобы принтер мог наносить металлы и на непроводящие поверхности. Расшифровываем: берется пластиковый предмет и помещается внутрь принтера; на него наносится проводящая серебряная краска; на серебряную краску наносятся разные металлы за счет процесса гальванизации.
Аккарди считает, что его принтер поможет людям создавать уникальные электронные устройства, например, «умные протезы», которые будут определять температуру и давление. Хотя в этом принтере заложен гигантский потенциал, у него есть один существенный недостаток: он очень медленно работает. Сейчас прототип Аккарди наращивает 0,2 мм по оси Z за час. При этом энергопотребление довольно высокое – около 17 В.

О гальванизации известно давно, однако идея ее использования для изготовления металлических изделий может произвести настоящую революцию в мире 3D-печати. Это абсолютно безопасная технология, которую можно применять в домашних условиях. Такой принтер смогут позволить себе небольшие компании, которые давно мечтают перейти к производству металлических изделий, а также простые пользователи, которым не терпится поэкспериментировать с металлами.