Относительное снижение удельного расхода топлива в поколениях гтд

Основные интегральные и удельные параметры, характеризующие ГТД. Основные узлы, агрегаты и элементы АД и ЭУ. Эксплуатационные режимы. Нагрузки, действующие на узлы и элементы двигателя. Долговечность, ресурс, ремонтопригодность, технологичность конструкций.

Лекция №3

2.2 Основные интегральные и удельные параметры, характеризующие ГТД.

Основные данные:

R – тяга, н, (кН, даН);

Эффективная мощность на валу, Вт (кВт, л.с.);

Эквивалентная мощность, включающая тягу собственно двигателя

(кВт, л.с.);

Расход топлива, кг/с;

Масса двигателя (сухая, полная, поставочная), кг;

D, L – габаритные размеры, мм;

Удельные параметры:

Удельная тяга, ,

Удельный расход топлива, , , ;

Удельный расход топлива, , , ;

Удельный вес, ;

Лобовая тяга, , , ;

Удельная объемная тяга, , , .

Интегральные параметры двигателя (расход воздуха через двигатель, тяга двигателя, его масса, скорость истечения газа из сопла и т.д.) характеризуют качество силовой установки, но не позволяют проводить сравнительную оценку различных двигателей. При проектировании новых двигателей, выполнении сравнительных оценок и выборе двигателей для силовой установки конкретного самолета чаще используют удельные параметры. К ним относятся удельная тяга двигателя, удельный расход топлива, удельная масса двигателя, удельная лобовая тяга.

Удельная тяга ТРД - это тяга, приходящаяся на 1 кг воздуха, проходящего через тракт двигателя в 1 секунду:

или (5.12)

Для одноконтурных ТРД удельная тяга составляет = 800…900 , для двухконтурных двигателей этот показатель тем меньше, чем больше степень двухконтурности. Для двигателей с большой степенью двухконтурности (m = 5…6) R уд = 300…400 .

В общем случае удельная тяга двигателя для режима полного расширения () рассчитывается по формуле:

где m – степень двухконтурности двигателя – отношение расхода воздуха через второй контур G в 11 – и расходу воздуха через первый контур G в 1 ;

– относительный расход топлива;

– расход топлива в секунду;

– относительный расход воздуха на охлаждение элементов двигателя;

и – скорости истечения газа и воздуха из сопл первого и второго контуров.

Удельный расход топлива - расход топлива на единицу тяги в единицу времени (обычно – на 1ньютон тяги в час):

В современных бесфорсажных ТРД С уд составляет 0,08…0,09 кг/Н. час . Чем выше степень двухконтурности, тем экономичнее двигатель. Для двигателей с большой степенью двухконтурности (m ~ 5..6)

С уд = 0,65…0,7 кг/Н. час .



Удельная масса двигателя - масса двигателя, приходящаяся на один ньютон тяги на максимальном режиме работы двигателя:

Для ТРД удельная масса находится в пределах __________кг/Н , для двухконтурных двигателей ____ кг/Н.

Наименьшая удельная масса – у подъемных двигателей самолетов вертикального взлета и посадки (Харриер – Великобритания, Як-38 – Россия), так как подъемные двигатели содержат небольшое количество деталей (около 2000 шт.) и упрощенные системы запуска, смазки, топливопитания. Для них m уд ~ 0,004…0,01 кг/Н.

Удельная лобовая тяга - тяга, приходящаяся на единицу максимальной площади поперечного сечения двигателя (площадь миделевого сечения):

(5.16)

Для ТРД удельная лобовая тяга составляет ____Н/м 2 , для ТРДД этот параметр зависит от степени двухконтурности и составляет ___ Н/м 2 (меньшие значения R лоб относятся к двигателям с большой степенью двухконтурности).

Удельная лобовая тяга является важной характеристикой авиационного реактивного двигателя. Она характеризует возможность получения заданной величины тяги при ограничениях максимального диаметра двигателя (например, при расположении двигателя в фюзеляже самолета). При наружном расположении двигателя на летательном аппарате (в мотогондоле) величина лобовой тяги в значительной степени определяет внешнее сопротивление двигательной установки.

В некоторых случаях величину лобовой тяги определяют не по миделю двигателя, а по площади входа в воздухозаборник:

Кроме этих основных удельных параметров иногда используют и некоторые другие – коэффициент тяги, удельный импульс тяги, удельную объемную тягу.

Коэффициент тяги - безразмерный коэффициент, представляющий собой отношение удельной лобовой тяги к скоростному напору набегающего воздуха:

При горизонтальном установившемся полете сила тяги двигателя равна силе аэродинамического сопротивления, откуда коэффициент тяги равен коэффициенту аэродинамического сопротивления С х :

Если величина больше С х , то избыточная тяга идет на разгон летательного аппарата.

Удельный импульс тяги - характеризуется величиной тяги двигателя, которая образуется при сжигании 1 кг топлива в секунду:

Удельная объемная тяга - отношение взлетной тяги двигателя к его объему:

Эта величина обычно используется для оценки объема двигателя и возможности его размещения в фюзеляже или мотогондоле летательного аппарата.

Основным свойством авиационного двигателя является создаваемая им тяга. Изменение взлетной тяги четырех типов авиационных ГТД по времени показано на рис.2.3 и 2.4. За 50 лет тяга выросла в 57 раз. За то же время взлетная масса самолетов с реактивными двигателями возросла в 100 раз. Максимальные тяги достигнуты в ТРД РД‑35‑51 – 205,82 кН и ТРДД GE90‑115B – 512,43 кН для гражданских самолетов. Наибольшие тяги для боевых самолетов достигнуты в ТРДФ РД‑7М2 – 161,715 кН и ТРДДФ НК‑32 – 245,0 кН. Приведенные данные наглядно иллюстрируют (с 1985 г.) распределение авиационных ГТД по классам тяги.

Рис.2.3 Рост максимальной тяги авиационных ГТД по годам


Рис.2.4 Изменение взлетной тяги авиационных ГТД по годам


Эволюция авиационных ГТД по удельному расходу топлива () авиационных ГТД для гражданской и военно-транспортной авиации на крейсерском режиме () показана на рис.2.5 и 2.6.

Рис.2.5 Изменение удельного расхода топлива по годам ()

Видно, что в каждом поколении авиационных ГТД, начиная с III, т. е. для ТРДД, уменьшение происходит по «ступенькам»: очередное значительное снижение связано с появлением нового поколения. Относительное снижение удельного расхода топлива в поколениях ГТД приведено в табл.2.1.

Если принять за исходное значение для ТРД первых пассажирских самолетов, то его снижение по поколениям будет весьма существенным (табл.2.1., первый столбец). Если же оценивать вклад в уменьшение каждого поколения по отношению к предыдущему, то он все меньше и меньше (табл.2.1, 2 и 3 столбец).

Наблюдаемая тенденция изменения (рис.2.5 и табл.2.1.), свидетельствует о том, что его дальнейшее снижение вызывает все большие трудности, «кривая уменьшения» выполаживается. Однако, если рассмотреть значения ТРДД V поколения (см. рис.2.6), то можно отметить явную тенденцию уменьшения от 0,056÷0,061 к 0,051 .

Это связано со значительным повышением уровня параметров цикла и двухконтурности ТРДД V поколения, а также с комплексным внедрением мероприятий по повышению КПД лопаточных машин, отработанных в отдельности на ТРДД поколения IV+.

Рис.2.6 Изменение удельного расхода топлива по годам

() для ТРДД IV, IV+ и V поколений

Таблица 2.1.

Проектные параметры ТРДД, а именно ,и m влияют на удельный расход топлива.

Зависимость ТРДД от двухконтурности показана на рис.2.7. Увеличение двухконтурности (конечно совместно с и ) благоприятно сказалось на удельном расходе топлива, уменьшился практически в 2 раза, с 0,9 до 0,495 . Влияние на иллюстрирует рис.2.8.

На этих рисунках в частности хорошо видно, что уменьшение ТРДД поколения IV+ не связано с ростом параметров цикла.

Рис.2.7 Зависимость от степени двухконтурности

Рис.2.8 Зависимость от

Главным показателем совершенства ТРДДФ является его удельная тяга, которая обычно дается для взлетного режима. Чем больше значение , тем выше лобовая тяга и соответственно меньше лобовые габаритные размеры и удельный вес двигателя. На значение первостепенное влияние оказывают температура газа и степень двухконтурности m. Чтобы проанализировать это влияние, на рис.2.9 даны расчетные зависимости значений при различных и m для =26. На график нанесены данные ТРДДФ трех поколений, включая отечественные. ТРДДФ для стратегического бомбардировщика Рокуэлл В-1В имеет относительно низкое значение =83,8 из-за m=2,1. Эти данные подтверждают целесообразность выбора для ТРДДФ истребителя предельно возможных значений и малых m для достижения высоких значений . Двухконтурность созданных ТРДДФ V поколения (для истребителей) лежит в диапазоне 0,25÷0,5.

Рис.2.9. Удельная тяга ТРДДФ трех поколений

Одним из показателей, определяющих маневренность самолетов-истребителей является тяговооруженность : отношение тяги силовой установки к весу самолета. Считается, что более высокая тяговооруженность истребителя открывает возможность к наступлению в воздушном бою. Влияние весового совершенства двигателей () на взлетную тяговооруженность для реактивных самолетов-истребителей разных поколений показано на рис.2.11. Одно из выражений, по которому определяется взлетная тяговооруженность, имеет вид:

Следовательно, тяговооруженность обратно пропорциональна удельному весу и прямо пропорциональна относительному весу силовой установки . За период с 1950 по 2005 гг. относительный вес силовой установки истребителя изменился от значений =0,15÷0,2 до =0,1÷0,15 (на рис.2.10 нанесены линии постоянных значений =0,1; 0,15; 0,2), т.е. уменьшился почти в 1,5 раза. .Не смотря на это, тяговооруженность возросла в 2,4 раза за счет уменьшения удельного веса двигателей в 3 раза. Следовательно, возможность увеличения обеспечивается исключительно снижением удельного веса двигателей . Способность современных истребителей завоевания превосходства в воздухе маневрировать с поперечной перегрузкой =9 обеспечивается удельным весом их двигателей .

На рис.2.11 показано уменьшение для ТРДФ и ТРДДФ по годам для II÷V поколений. За исключением ТРДФ J85 и Р35-300, барьер в =0,15 преодолели только ТРДДФ IV и V поколений.

Рис.2.10 Взаимосвязь весового совершенства ТРДФ, ТРДДФ

и тяговооруженности самолетов-истребителей

Рис.2.11 Уменьшение удельного веса ТРДФ и ТРДДФ по годам

Эксплуатационные ограничения режимов работы двигателя

Из-за прочностных или функциональных ограничений двигателя приходится вводить и ограничения по условиям применения летательного аппарата с тем, чтобы, например, давление воздуха за компрессором не превысило предельного из условия прочности корпуса камеры сгорания. Такие ограничения могут быть необходимы по времени непрерывной работы двигателя на режиме, величине максимальной температуры газов перед турбиной, газовых нагрузок, действующих на рабочие лопатки компрессора и турбины, предельной частоте вращения ротора и т.п. Эксплуатационные ограничения режимов работы двигателя устанавливаются с учетом исключения механических и тепловых перегрузок отдельных деталей и узлов конструкции и обеспечения устойчивой работы элементов силовой установки.

1. Ограничения по устойчивой работе входного устройства. Ограничения (по режимам дросселирования ГТД, углам атаки и т.п.) вводятся с целью согласования расходов воздуха через входное устройство ГТД.

2. Ограничения по устойчивой работе компрессора. Ограничения по максимальной приведенной частоте вращения РНД, температуры газа перед турбиной .

3. Ограничения по устойчивой работе камер сгорания.

4. Ограничения по перегрузкам. По линейным перегрузкам, по угловым скоростям, по угловым ускорениям, работать на предельных углах крена, тангажа, рыскания и скольжения, по времени действия перегрузок.

5. Ограничения по воздействию пыли и птиц. Снижение тяги двигателя при работе в запыленных условиях (задана концентрация пыли) на максимальном режиме и на режиме работы, соответствующем рулению ЛА в течение заданного времени не более 3%. Попадание в двигатель птиц заданной массы при опробовании на земле, при рулении, взлете (посадке) и в полете не должно приводить к нелокализованному отказу.

6. Ограничения по воздействию на двигатель внешней среды (температура, давление, влажность, составляющие скорости ветра, обледенение, град, снег, дождь и т.п.).

На рис.28 показаны диапазон высот и скоростей полета самолета и возможные ограничения, налагаемые на него двигателем.

Ограничение по низкому давлению газов за турбиной возникает при малых скоростях полета самолета, когда давление воздуха повышается в воздухозаборнике за счет скоростного напора незначительно, следовательно, давление воздуха за компрессором и газов за турбиной будет также невысоким. Естественно, включение форсажа на таком режиме будет бессмысленным.

Ограничение по скоростному напору связано с нагревом конструкции самолета и воздействием на нее больших газовых нагрузок. Воздух, поступающий в компрессор, так же будет иметь высокую температуру. При торможении воздуха в воздухозаборнике и дальнейшем сжатии в компрессоре температура его дополнительно повысится и может превысить допустимый предел.

При полете самолета на малой высоте и максимальной скорости при температуре окружающего воздуха минус 40 °С плотность воздуха и скоростной напор будут максимальными. Это режим максимального расхода воздуха через двигатель. Давление воздуха за компрессором двигателя также будет большим и может превысить ограничения по прочности корпуса камеры сгорания. На этом режиме также возрастает до недопустимой величины расход топлива при включении форсажа.

Запуск двигателя в полете осуществляется на режиме авторотации. Если выполнять такой запуск на большой высоте (при малой плотности воздуха), то, во-первых, ротор может не достичь необходимой для запуска частоты вращения, во-вторых, будет затруднен розжиг камеры сгорания из-за недостатка кислорода и малого диапазона устойчивости по коэффициенту избытка воздуха. При большой скорости полета самолета камеру сгорания также будет трудно разжечь из-за высокой скорости воздуха в ее фронтовом устройстве и срыва пламени. Поэтому запуск двигателя в воздухе выполняется на скорости V пр = 550…650 км/час и на высотах не более 8 км (до 10…11 км с кислородной подпиткой). На высотах менее 2 км запуск запрещен по условиям безопасности (у экипажа должен оставаться резерв высоты для покидания самолета при невозможности запуска двигателя).

Для значительного числа деталей, узлов и элементов двигателя не представляется возможным точно учесть действующие силовые факторы, особенно при наличии вибрационных режимов, и, кроме того, формы деталей бывают настолько сложными, что выполнить прочностной расчет по точным аналитическим зависимостям невозможно. В этих случаях расчеты выполняют с использованием численных методов (методы конечных разностей, конечных элементов и др.). На помощь конструктору приходят также сравнительный расчет и эксперимент на модели и в натуре.

При сравнительном расчете напряжения в деталях проектируемого двигателя сравнивают с напряжениями в аналогичных деталях двигателя-прототипа, хорошо зарекомендовавшего себя в эксплуатации.

Большую помощь конструктору при проектировании двигателя оказывает теория подобия, позволяющая по известным данным двигателя-прототипа провести предварительную оценку параметров геометрически и газодинамически подобного двигателя. Для таких двигателей справедливы следующие соотношения:

– отношения масс двигателей приблизительно пропорционально отношению кубов их диаметров;

– отношение тяг приблизительно пропорционально отношению квадратов их диаметров;

центробежные силы элементов роторов подобных двигателей, у которых в сходственных точках окружные скорости одинаковы, пропорциональны квадратам линейных размеров Р ц 1 /Р ц 2 = D 2 к1 /D 2 к2 , а напряжения в сходственных точках будут, соответственно, одинаковы. То же относится и к газовым силам и напряжениям от них.

Особенное значение теория подобия приобретает в связи с внедрением принципа проектирования новых двигателей на базе хорошо отработанной турбокомпрессорной части (базового газогенератора).

Процесс изготовления двигателя начинается с создания 10 опытных экземпляров (ранее трех-четырех десятков и более опытных экземпляров, которые проходят следующие основные испытания:

– заводские (наземные и летные);

– государственные (наземные и летные);

– сертификационные (наземные и летные);

– эксплуатационные.

На основании положительных результатов государственных испытаний двигатель внедряется в серийное производство. Иногда с целью сокращения сроков отдельные этапы различных испытаний могут совмещаться.

Серийные двигатели проходят контрольно-сдаточные испытания. С целью установления (подтверждения) назначенного и межремонтных ресурсов и сроков службы двигатели проходят лидерные (ускоренные) испытания, при которых наработка лидерных двигателей опережает в 1,5…2 раза наработку двигателей, находящихся в серийной эксплуатации.

Для подтверждения качества выполнения мероприятий на двигателях (модернизация, доработки по бюллетеням) двигатели могут подвергаться специальным испытаниям.

Рисунок 2.4 – Зависимость удельного расхода топлива от эффективного (η å )

è полетного КПД

2.2 - Параметры ГТД

2.2.1 - Основные параметры авиационных ГТД

Параметры, характеризующие ГТД, можно разделить на две группы.

Первая группа – это параметры, выражающиеся абсолютной величиной и зависящие от размерности двигателя. Важнейшие из них:

- реактивная тяга – для двигателей прямой реакции (ТРД, ТРДФ, ТРДД, ТРДДФ),

- мощность на выходном валу – для ГТД непрямой реакции (ТВД и вертолетных ГТД);

Расход топлива;

- расход воздуха на входе в двигатель;

Сухая масса;

- габаритные размеры.

Тяга, мощность, расход топлива и расход воздуха зависят от многих факторов - режима работы ГТД, скорости и высоты полета, атмосферных условий, принятой программы регулирования. Поэтому эти параметры обычно указываются при стандартных атмосферных условиях для основных важнейших режимов и условий полета - на взлетном режиме при Í = 0 èÌ Ï = 0 è â высотно-скоро- стных условиях, наиболее характерных для конкретного типа ГТД.

Рисунок 2.5 – Теоретически достижимые минимальные значения удельных расходов топлива в зависимости от температуры газа перед турбиной

Например, для ТРДД магистральных гражданских и военно-транспортных самолетов это, как правило, режим набора высоты (номинальный) и максимальный крейсерский режим на высотеÍ = 11 км при скорости полета, соответствующей числуÌ Ï = 0,8 (V Ï = 850 км/ч), а также максимальный режим приÍ = 0 при скорости отрыва самолета от ВПП (Ì Ï = 0,2…0,25).

Для военных ТРДФ и ТРДДФ в земных условиях обычно указывается параметры на взлетном режиме, как без использования форсажа, так и с вклю- ченной ФК (полный форсаж).

В зависимости от назначения двигателя вели- чина тяги и мощность авиационных ГТД (размерность двигателя) изменяются в широких пределах. Они определяют расход воздуха, расход топлива, габаритные размеры и массу ГТД. Указанные абсолютные параметры используются при проектировании летательного аппарата для определения его летно-технических характеристик.

Тяга современных ТРД и ТРДД изменяется в широких пределах - от нескольких килоньютонов до нескольких сотен килоньютонов. В настоящее время максимальная тяга достигнута на ТРДД GE90-115B фирмы General Electric (GE). Этот двигатель предназначен для двухдвигательного дальнемагистрального самолета Вoeing 777. Во время испытаний двигатель развивал тягу 569 кН

Глава 2 - Основные параметры и требования к ГТД

(58000 кгс) при сертификационной взлетной тяге

512 кН (52200 кгс). Среди форсажных двигателей наибольшую взлетную тягу R Ô = 245 кН (25000 кгс) имеет ТРДДФ ÍÊ-32, разработанный в СССР в КБ «Труд» (в настоящее время - ОАО «СНТК имени Н.Д.Кузнецова», г. Самара), и применяемый на стратегическом бомбардировщике ÒÓ-160.

Мощность современных ТВД и вертолетных ГТД составляет от нескольких сотен до нескольких тысяч киловатт. Максимальную мощность Nе = 11030 кВт (15000 л.с.) имеет двигатель ÍÊ-12 самарского КБ «Труд» для самолетов ÒÓ-95, ÒÓ114, ÀÍ-22. Двигатель прошел государственные испытания в 1956 г. и в течение полувека является рекордсменом-долгожителем, продолжая эксплуатацию на стратегическом бомбардировщике ÒÓ-95 è военно-транспортном самолете ÀÍ-22.

Наиболее мощным вертолетным ГТД является двигатель Ä-136 мощностью 8400 кВт (11400 л.с.), созданный в СССР в КБ «Прогресс» (г. Запорожье, ныне Украина) для тяжелых вертолетов ÌÈ-26.

Столь широкий диапазон тяги и мощности ГТД обуславливает значительные различия в конструкции и параметрах двигателей в зависимости от их размерности. Поэтому, при анализе конструктивных особенностей и параметров ГТД обычно условно делят на классы тяги или мощности (более узкие диапазоны). Входящие в один класс двигатели имеют относительно близкую размерность и, соответственно, значительно большую общность параметров и конструктивных решений. Это позволяет более объективно оценивать и сравнивать степень совершенства ГТД и его отдельных узлов.

Например, для современных гражданских ТРДД можно условно выделить следующие классы тяги:

- 10…30 кН (~1000…3000 кгс) – ТРДД для небольших служебных и региональных самолетов;

- 30…60 кН (3000…6000 кгс) – ТРДД для двухдвигательных дальних служебных самолетов и для региональных самолетов вместимостью 50…70 пассажиров;

- 60…90 кН (6000…9000 кгс) – ТРДД для двухдвигательных региональных самолетов вместимостью 70…120 пассажиров;

- 90…140 кН (9000…14000 кгс) – ТРДД для двухдвигательных ближне- и среднемагистральных самолетов вместимостью 120…180 пассажиров;

- 140…200 кН (14000…20000 кгс) – ТРДД для двухдвигательных ближне- и среднемагистральных самолетов вместимостью 180…250 пассажиров и для четырехдвигательных дальнемагистральных самолетов вместимостью 300…350 пассажиров;

200…350 кН (20000…35000 кгс) ТРДД для двухдвигательных ближне- и среднемагистральных самолетов вместимостью 200…300 пассажиров и для четырехдвигательных дальнемагистральных самолетов вместимостью 350…600 пассажиров;

Свыше 350 кН (> 35000 кгс) - ТРДД для двухдвигательных дальнемагистральных самолетов вместимостью свыше 300 пассажиров.

Для военных ТРД(Ф) и ТРДД(Ф) можно выделить следующие классы тяги:

До 10 кН (< 1000 кгс) – малоразмерные ТРД и ТРДД для летающих мишеней, крылатых ракет, беспилотных ЛА;

10…50 кН (1000…5000 кгс) – двигатели для учебно-тренировочных самолетов, легких истребителей и ударных самолетов;

50…150 кН (5000…15000 кгс) – двигатели для средних и тяжелых одно- и двухдвигательных боевых самолетов (истребители и ударные самолеты); - свыше 150 кН (> 15000 кгс) – для тяжелых истребителей и ударных самолетов с высокой тяговооруженностью, а также сверхзвуковых тяжелых

стратегических бомбардировщиков.

ТВД и вертолетные ГТД можно условно разделить на двигатели малой (< 1000 кВт), средней (1000…3000 кВт) и высокой (> 3000 кВт) мощности. ГТД малой мощности применяются на легких турбовинтовых самолетах и вертолетах (служебных и частных). ГТД средней мощности применяются на транспортных и пассажирских двух- и четырехдвигательных турбовинтовых самолетах и вертолетах среднего класса. ГТД высокой мощности применяются на тяжелых транспортных самолетах и бомбардировщиках (ÀÍ-22, Òó-95) и тяжелых вертолетах (ÌÈ-26).

Необходимо отметить, что такое деление двигателей на классы носит условный характер. В зависимости от конкретных целей сравнения и анализа классы тяги и мощности ГТД могут быть сужены или расширены.

Расход воздуха современных авиационных ГТД изменяется в широких пределах: от ~1 кг/с в вертолетных и самолетных ГТД малой мощности до ~1500 кг/с в мощных ТРДД с высокой степенью двухконтурности.

Для сравнительной оценки уровня технического совершенства ГТД используются удельные параметры , не зависящие от размерности двигателя:

Удельная тяга R ÓÄ – отношение тяги ТРД(Ф)

и ТРДД(Ф) к расходу воздуха (R ÓÄ =R /G Â );

Удельная мощность N ÓÄ – отношение мощности на валу ТВД или вертолетных ГТД к расходу воздуха (N ÓÄ =N å /G Â );

Глава 2 - Основные параметры и требования к ГТД

Удельный расход топлива – отношение ча- сового расхода топлива к тяге или мощности (для ТРД и ТРДД Ñ R =G Ò /R , для ТВД и вертолетных

å = G Ò /N å );

Удельная масса γ - отношение сухой массы

ê тяге или мощности (для ТРД и ТРДД γ =Ì ÄÂ /R , для ТВД и вертолетных ГТДγ =Ì ÄÂ /N e ). В зарубежной литературе часто используется обратная величина – отношение тяги к массе;

Лобовая тяга R ËÎÁ – отношение тяги к площади входа в двигатель (R ËÎÁ =R /F ÂÕ ).

Удельной тягой и мощностью (R ÓÄ , N ÓÄ ) называют тягу или мощность, получаемые с одного килограмма расхода воздуха через двигатель. При заданной тяге или мощности повышение удельных показателей означает снижение потребного расхода воздуха через двигатель и, как следствие - уменьшение габаритов и массы ГТД.

К настоящему времени на военных ТРДДФ с низкой степенью двухконтурности m = 0,25…0,5 достигнута наибольшая величина удельной тяги. Она составляет 120…130 дН/кг/с и имеет тенденцию к дальнейшему увеличению в перспективных проектах. Высокая удельная тяга для современных военных двигателей помимо снижения массы и габаритов обеспечивает возможность сверхзвукового крейсерского полета без включения форсажной камеры.

Удельная тяга гражданских ТРДД имеет тенденцию к некоторому снижению даже несмотря рост температуры газа перед турбиной. Это является следствием постоянного повышения степени двухконтурности (расхода воздуха) для улучшения экономичности и снижения шума.

Совершенствование цикла ГТД - повышение

Ò *Ã ,π *Ê , аэродинамической эффективности узлов - позволяет на современных самолетных и вертолетных двигателях достигать удельной мощности

N ÓÄ = 300…350 кВт/кг/с. И эта величина не является предельной.

Удельный расход топлива характеризует топливную эффективность (экономичность) ГТД. Для современных гражданских ТРДД в условиях крей-

серского полета (H = 11 êì,Ì ï = 0,8) он составляет величинуC R = 0,5...0,8 êã/äÍ· ч. Более высокие значе- нияC R = 0,8...0,7 êã/äÍ· ч имеют ТРДД 1960...1970-õ годов с низкой степенью двухконтурностиm =1…2,5. Новейшие ТРДД с высокой и сверхвысокой степенью двухконтурности (m =5…16) имеют удельный

расход C R = 0,6…0,5 êã/äÍ· ч. На Рис.2.6 показана зависимость удельного расхода топлива от уровня тяги для современных ТРДД.

Удельный расход топлива современных ТВД и вертолетных ГТД (C å ) составляет:ÃÒÄ Ñ

0,25…0,3 êã/êÂò · ч для ГТД мощностью более 1000 кВт;

0,3…0,35 êã/êÂò · ч для ГТД малой мощности до 1000 кВт.

Снижение удельного расхода топлива значи- тельно уменьшает прямые эксплуатационные расходы и позволяет увеличить дальность полета воздушных судов. Поэтому улучшение экономичности гражданских ТРДД, ТВД и вертолетных ГТД - важнейшее направление их совершенствования.

Для военных ТРД(Ф) и ТРДД(Ф) экономич- ность также является важным фактором, во многом определяющим радиус боевого действия и стоимость жизненного цикла двигателя. Для данного типа двигателей стремление к повышению удельной тяги входит в противоречие с необходимостью снижения удельного расхода топлива. Поэтому при выборе параметров военных ТРДД, особенно предназначенных для многорежимных самолетов, ищется оптимальный компромисс, который бы удовлетворял требования высоких тяговых характеристик и приемлемой экономичности.

Сочетание высокой удельной тяги на сверхзвуковых режимах и низкого удельного расхода топлива на дозвуковых крейсерских режимах может быть обеспечено применением различных схем двигателей с изменяемым циклом (ДИЦ). Такие двигатели обеспечивают оптимальное изменение степени двухконтурности и степени сжатия на различных режимах.

Удельная масса ГТД является комплексным показателем, который характеризует параметрическое, конструктивное и технологическое совершенство ГТД. При проектировании ГТД, его узлов и агрегатов применяются различные способы, направленные на снижение удельной массы.

Основные из этих способов:

- совершенствование цикла ГТД - повышение параметров цикла, снижение внутрицикловых потерь, применение сложных циклов позволяет увеличить удельную работу цикла и, при заданной тяге, снизить потребный расход воздуха через ГТД, а значит и его размерность;

- аэродинамическое и конструктивное совершенствование основных узлов ГТД - увеличение аэродинамической нагрузки ступеней компрессора и турбины, а также конструктивные и схемные мероприятия позволяют снизить число ступеней и, следовательно, снизить массу;

- современные конструкционные материалы – применение более жаропрочных, с высокими механическими свойствами, в том числе композиционных материалов как в «горячих», так и в «холодных» узлах ГТД, позволяет снизить массу ос-

Глава 2 - Основные параметры и требования к ГТД

Рисунок 2.6 - Зависимость удельного расхода топлива от уровня тяги для современных ТРДД

новных деталей ротора и статора при сохранении запасов длительной и циклической прочности;

Применение перспективных технологий изготовления - моноколеса типа «blisk» и «bling», передовые методы сварки роторов и корпусов, термозащитные покрытия деталей, наиболее подверженных воздействию высоких температур, и др.

Более детально эти способы снижения массы будут рассмотрены в разделах, посвященных проектированию основных узлов ГТД.

Отметим, что удельная масса авиационного ГТД зависит от его размерности - тяги или мощности. Это объясняется следующим. При сохранении геометрического подобия, механической напряженности и температурного состояния масса двигателя должна была бы зависеть от куба диаметра, например, диаметра на входе в компрессор. По зависимости, близкой к кубической, изменяются, например, массы роторов ГТД. Однако, для таких деталей как корпуса, сопла, входные устройства, агрегаты с коммуникациями зависимость массы от диаметра ближе к квадратичной. Поэтому масса двигателя Ì ÄÂ пропорциональна диаметруD в степениn , ãäå 2

Тяга двигателя R пропорциональна расходу воздуха G Â , который в свою очередь зависит от площади на входе в компрессор, т.е. от квадрата диаметра:R ~G Â ~D 2 . Тогда удельная масса ГТД может быть выражена как:

Поскольку n > 2, то при уменьшенииD (размерности двигателя)γ тоже уменьшается.

Однако, это утверждение справедливо лишь до некоторой предельной тяги, примерно равной 10 кН (1000 кгс). При дальнейшем снижении тяги удельная масса будет возрастать, т.к. размеры значительного количества деталей при малой размерности ГТД определяются уже не условиями их нагрузки, а технологическими возможностями .

Таким образом, чтобы корректно сравнить удельные массы различных двигателей для оценки их совершенства, сравнение необходимо проводить для ГТД близкого класса тяги (мощности), одного типа и назначения.

Глава 2 - Основные параметры и требования к ГТД

Удельная масса современных гражданских ТРДД находится в пределах 0,16…0,21. Для военных ТРДДФ – в пределах 0,1…0,15. В перспективных программах планируется снижение удельной массы ТРДДФ до значений 0,05…0,08.

Лобовой тягой называют тягу, которую можно получить с единицы (1 м2 ) входного сечения ГТД. Лобовая тяга характеризует возможность получения заданной тяги при габаритных ограниче- ниях максимального диаметра двигателя.

При фиксированном диаметре на входе в компрессор лобовую тягу можно повысить за счет увеличения удельной тяги или производительности компрессора (расхода воздуха). Повышение расхода воздуха можно достичь увеличением скорости воздуха на входе в компрессор, а также уменьшением втулочного диаметра на входе в компрессор.

 однотипных двигателях увеличение лобовой тяги также косвенно говорит об улучшении их весовых характеристик.

2.2.2 - Основные параметры наземных и морских приводных ГТД

 отличие от авиационных двигателей, в наземных и морских ГТД свободная энергия полностью срабатывается на турбине и передается потребителю в виде механической работы на выходном валу двигателя. По способу использования свободной энергии наиболее близким авиационным аналогом для наземных и морских ГТД является вертолетный ГТД.

К основным параметрам наземных и морских ГТД относятся эффективная мощность и эффективный к.п.д. на выходном валу. Также важными параметрами являются расход воздуха, расход и температура газов на выхлопе, располагаемая тепловая мощность на выхлопе, расход топлива. Эти параметры используются при проектировании ГТУ и объектов применения ГТД.

Масса и габариты для наземных и морских ГТД имеют второстепенное значение. Исключение составляют транспортные ГТД, в т.ч. и морские, используемые для привода судовых движителей. Для транспортных двигателей габариты (объем) имеют важное значение, поскольку пространство для их размещения на объектах применения зачастую ограничено.

Параметры ГТД обычно даются в стандартных условиях ISO 2314:

Температура атмосферного воздуха +15 °С; - давление атмосферного воздуха 760 мм рт.ст.; - относительная влажность воздуха 60 %;

- без учета потерь давления во всасывающем

è выхлопном устройствах объекта применения ГТД,

- с учетом потерь на всасе и выхлопе собственно ГТД - во входном корпусе компрессора и выхлопном тракте ГТД за турбиной, включающем стойки задней опоры, диффузор и улитку.

Мощность наземных и морских ГТД изменяется в широких пределах - от десятков киловатт в микротурбинах до сотен мегаватт в крупных стационарных энергетических ГТД. К настоящему времени создано множество моделей ГТД, достаточно равномерно заполняющих мощностной ряд от 30 кВт до 350000 кВт (350 МВт).

Мощностной ряд ГТД можно условно разделить на четыре класса:

- микротурбины – имеют мощность 30 кВт до 250 кВт, применяются обычно в составе автономных энергоагрегатов для выработки электроэнергии или совместного производства электрической, тепловой энергии и ряде случаев для производства холода;

- ГТД малой мощности - от 250 кВт до 10 МВт для механического и морского привода, привода электрогенераторов в составе ГТЭС простого цикла и в когенерационных установках для совместного производства электрической и тепловой энергии;

- ГТД средней мощности - от 10 МВт до 60 МВт для механического и морского привода, в составе ГТЭС простого и комбинированного парогазового цикла и в когенерационных установках;

- ГТД большой мощности - от 60 до 350 МВт, используются в составе ГТЭС комбинированного парогазового цикла и в когенерационных установках; значительно реже – в простом цикле.

Важнейшими удельными параметрами, определяющими степень технического совершенства наземных и морских ГТД, являются удельная мощность и эффективный к.п.д. на выходном валу.

Удельная мощность (аналогично ТВД и вертолетным ГТД) представляет собой мощность, приходящуюся на единицу (1 кг/с) расхода возду-

õà G Â , и численно равна удельной работе цикла (кДж/кг), кВт/кг/с.

NÓÄ = Ne / GÂ .

Современные наземные и морские ГТД постоянно развиваются в сторону повышения удельной мощности за счет увеличения температуры газа перед турбиной, совершенствования аэродинамики лопаточных машин и систем охлаждения. В настоящее время особенно значителен прогресс в повышении параметров мощных одновальных энергетических ГТД. Это объясняется интенсивным

Глава 2 - Основные параметры и требования к ГТД

заимствованием авиационных технологий в области трехмерной аэродинамики, применением многослойных теплозащитных покрытий (ТЗП) и эффективных систем охлаждения турбины, использованием теплообменников для снижения температуры охлаждающего воздуха и водяного пара- в качестве охладителя.

Удельная мощность новейших серийных энергетических ГТД достигает 400…450 кВт/кг/с при освоенной температуре газа перед турбиной Ò *ÑÀ = 1700 К (при работе в базовом режиме с межремонтным ресурсом 25000 часов). Разрабатываются опытные модели энергетических ГТД с температурой газа перед турбинойÒ *ÑÀ = 1783 Ê.

У ГТД малой и средней мощности удельная мощность достигает значений 300…350 кВт/кг/с при максимальной температуре газа на номинальном режиме Ò *ÑÀ = 1500…1600 Ê.

Важнейшим удельным параметром наземны- х и морских ГТД является эффективный к.п.д. (η å ). Он характеризует топливную эффективность и представляет собой отношение эффективной мощности на валуN å к мощности, подведенной с топливомN ÒÎÏË , êÂò:

ãäå G Ò ×ÀÑ – часовой расход топлива ГТД, кг/ч;H u – низшая теплота сгорания, кДж/кг.

Учитывая, что отношение G Ò×ÀÑ /N å является удельным расходом топливаÑ å , выражение для эффективного к.п.д. ГТД можно записать также в виде:

Повышение эффективного к.п.д. – важнейшее направление развития ГТД – достигается повышением параметров цикла Ò *ÑÀ èπ *Ê в оптимальном соотношении, а также уменьшением внутрицикловых потерь за счет совершенствования аэродинамики лопаточных машин, систем охлаждения и снижения потерь по тракту ГТД.

Эффективный к.п.д. зависит также и от класса мощности - у ГТД меньшего класса мощности к.п.д., как правило, ниже (см. Рис. 2.7). Эта зависимость проявляется через фактор размерности. В ГТД меньшей мощности более умеренные параметры цикла, т.к. сложнее получить высокий к.п.д. на малоразмерных лопаточных машинах. Параметры цикла, кроме этого, влияют и на удельную стоимость ГТД. Эффективный

2.3 - Требования к авиационным ГТД

К авиационным ГТД предъявляются следующие требования:

- общие технические требования, изложенные

â нормативных документах,

- технические требования к конкретному разрабатываемому двигателю с учетом его установки на конкретный летательный аппарат.

В числе важнейших технических требований к конкретному двигателю - технические характеристики, надежность, ресурс, живучесть и безопасность, производственная и эксплуатационная технологичность, экологические характеристики, экономические показатели.

2.3.1 - Требования к тяге (мощности)

Тяга и удельный расход топлива – важнейшие характеристики двигателя, определяющие размеры и основные внутренние параметры (Ò *ÑÀ ,π *Ê ,m ).

Тяга авиационного двигателя должна обеспе- чивать необходимую тяговооруженность летательного аппарата в различных условиях полета. Тяго-

вооруженность – это отношение суммарной тяги всех установленных на самолете двигателей (R ÂÇË∑ ), к взлетной массе самолета (G ÑÀÌ.ÂÇË ):

Для транспортных дозвуковых самолетов тяга задается исходя из следующих условий.

Первое - обеспечение необходимой тяговооруженности на взлетном режиме (с ограничением

времени работы двигателей). Тяговооруженность должна обеспечивать нормальный взлет при заданной взлетной дистанции, безопасный взлет и набор высоты при отказе двигателя, уход на второй круг при снижении и посадке, а также минимальное акустическое воздействие при взлете и пролете. Тяговооруженность современных транспортных самолетов в зависимости от числа двигателей находится в пределах 0,25…0,35. Меньшее значение относится к четырехдвигательным самолетам, большее – к двухдвигательным.

Второе - получение необходимой тяговооруженности (избытка тяги) для набора высоты по заданной траектории H =f (L ) с постоянной приборной скоростью (V ÏÐ =const) è ñ оптимально-минималь- ным временем набора крейсерского эшелона (τ ≈ 30 мин), который определяется навигационными и экономическими факторами (расход топлива).

Третье - получение необходимой тяговооруженности на максимальном крейсерском режиме (предельный режим с неограниченным временем работы), для обеспечения устойчивого полета с поддержанием оптимальных заданных скорости (Ì Ï ) и эшелона (Í ) крейсерского полета. Самый выгодный по расходу топлива полет совершается по статическому потолку - с набором высоты по мере выгорания топлива. Однако, такой режим непригоден для пассажирских маршрутов.

При недостаточной тяговооруженности на взлетном режиме допускается применение максимального взлетного режима (ЧР, APR) с очень ограниченным суммарным временем работы (τ ≈ 5…30 мин). Такое может происходить при отказе двигателя на взлете и других чрезвычайных ситуациях. При отказе двигателя в высотном полете используется так называемый «промежуточный режим». Для поддержания безопасной высоты полета такой режим имеет меньшие параметры, чем взлетный режим, но бoльшие, чем режим набора высоты.

Поддержание заданной тяги на режимах производится, как правило, до температуры атмосферного воздуха t Í = (ÌÑÀ+150 С) при взлете иt Í =(ÌÑÀ+10Î С) на режимах набора высоты и крейсерских. Поскольку скоростные характеристики двигателей с разной удельной тягой (различной степенью двухконтурностиm ) отличаются, то, как правило, дополнительно задается также тяга на взлетном режиме при скорости отрыва самолета от взлетно-посадочной полосы (ВПП), обычно соответствующейÌ Ï =0,20…0,24.

Дополнительным к сверхзвуковым транспортным самолетам предъявляется требование высокой тяговооруженности при Ì Ï = 0,95…1,15 äëÿ

Одним из важных требований к характеристикам управления ГТД является высокая точность поддержания (ограничения) заданной температуры газа на установившихся и переходных режимах его работы, так как качество регулирования на режимах, предельных по температуре газа, является важным для получения требуемых характеристик и сохранения ресурса двигателя. Погрешности регулирования температуры газа на установившихся режимах не должны превышать 5. .10 К, а на переходных режимах допустимая величина «заброса» температуры составляет 30. .50 К на время не более 0,5. .1с. При этом скорость изменения температуры газа на переходных режимах может достигать 500 К/с.

В качестве измерителей температуры газа в САУ используются термопары, которые для защиты от повреждений помещают в корпус (чехол). В таком конструктивном исполнении измеритель имеет достаточно большую инерционность, препятствующую получению требуемой динамической точности регулирования (ограничения) температуры газа при быстропротекающих переходных процессах в двигателе, например, таких как приемистость. Для улучшения динамических свойств регулятора температуры газа применяют алгоритмическую компенсацию инерционности измерителя, вводя в сигнал управления воздействие по производной от сигнала измерения. Повышение качества компенсации достигается путем коррекции параметров алгоритма по давлению воздуха за компрессором р или комплексу параметров.

Устойчивость регулирования температуры газа зависит от характеристик измерителя температуры, алгоритмов управления и способов согласования канала регулирования Т с другими каналами управления в САУ. Однако общей закономерностью является уменьшение области устойчивости регулирования при снижении инерционности канала регулирования различными способами (применением малоинерционных измерителей, введением компенсирующих устройств). Такая тенденция имеет место для двигателей различных типов во всех условиях полета.

Отмеченную закономерность иллюстрируют границы областей устойчивости регулятора температуры для одного из двигателей, показанные. На графиках используются следующие обозначения: - суммарный коэффициент усиления регулятора температуры коэффициент, характеризующий величину сигнала но производной в пропорционально-интегрально-дифференциальном (ПИД) регуляторе температуры газа; Тит - постоянная времени, характеризующая инерционность измерителя температуры газа. Штриховка направлена внутрь области устойчивости.

Эта особенность характеристик устойчивости регулирования определяет противоречия в требованиях к параметрам регулятора температуры газа, которые должны обеспечивать высокое качество регулирования на переходных режимах работы двигателя и необходимую точность на установившихся: необходимо иметь малую инерционность канала регулирования, что не позволяет реализовать достаточно высокий коэффициент усиления в нем для получения требуемой точности поддержания заданного значения Т на установившихся режимах.