Солнечные батареи отечественного производства. Обзор российского производства солнечных панелей. Подробно об особенностях использования «зелёных» источников энергии

Солнечная панель или другими словами солнечная батарея, это устройство, предназначенное для преобразования солнечной энергии в электрическую.

Альтернативные источники энергии получают все более широкое применение в повседневной жизни людей, а энергия солнца – это не только безопасный, но и бесконечный поставщик света и тепла на ближайшие тысячелетия.

Для получения электрической энергии при помощи солнечных батарей не требуется больших капитальных затрат, поэтому данный способ получил широкое распространение в различных отраслях промышленности, сельском хозяйстве и в индивидуальном использовании. Данные устройства выпускают как зарубежные производители, так и отечественные компании.

Отечественные производители солнечных панелей

Солнечная панель – это определенное количество кремниевых фото-ячеек, соединенных между собой и помещенных в единый корпус. Фото-ячейки бываю трех видов: из поликристаллов, монокристаллов и с напылением из кремния. Использование того или другого вида фото-ячеек влияет на КПД установки и ее стоимость.

На российском рынке независимых источников энергии прочное место заняли отечественные производители солнечных панелей. Рассмотрим некоторых из них.

Компания ЗАО «Телеком – СТВ»

Данная компания г. Зеленограда имеет патент на изготовление кремниевых пластин диаметром до 15 мм, и модулей на их основе.

Панели ЗАО «Телеком – СТВ» маркируются как ТСМ, и различаются по:

  • мощности: от 18 до 270 Вт;
  • габаритам: от 430х232 до 1633х966, при неизменной толщине – 43 мм;
  • весу: от 1,45 до 18,5 кг;
  • стоимости: от 3500,00 до 23400,00 рублей.

Основной тип панелей – монокристаллические.

Компания «Хевел»

ООО «Хевел» г. Новочебоксарск, Республика Чувашия выпускает тонкопленочные панели, обладающие малой толщиной и оригинальным дизайном.

С 2017 года производство компании переформатировалось на выпуск гетеро-структурных солнечных модулей мощностью 300 Вт, с техническими показателями:

  • напряжение: 38,9 – 43,2 В;
  • габариты: 1656х991 мм.

Ранее в ассортимент компании вошли солнечные панели с маркировкой Hevel Solar HVL со следующими характеристиками:

  1. мощность – 100 Вт;
  2. номинальное напряжение – 12/24/48 В;
  3. габариты: 1300х1100 мм, при толщине 6,8 мм;
  4. вес – 26 кг;
  5. стоимость – от 9000,00 рублей.

«Рязанский завод металлокерамических приборов» («РЗМК»)

Предприятие, работающее на рынке коммутационной аппаратуры, герконов, в том числе выпускает и солнечные модули с маркировкой RZMP и характеристиками:

  • мощность: 105 – 275 Вт;
  • напряжение: 16,9 – 31,27 В;
  • КПД: 13 – 16,9 %;
  • габариты: 1640х980 и 1490х670 мм, при толщине 36,0 мм;
  • вес: 14,6 – 21,5 кг;
  • стоимость: от 7500,00 до 16800,00 рублей.

ПАО «Сатурн»

Краснодарское предприятие выпускает панели на основе монокристаллического кремния и арсенид-галлиевые с германиевой подложкой. Условия эксплуатации аппаратов компании ПАО «Сатурн»: от сложных, в условиях нашей планеты, до возможности использования в космическом пространстве.

В ассортименте компании:

  1. панель СБ КА «Спектр-Р» — на основе кремния;
  2. панель СБ КА «Ресурс ДК» — на основе кремния;
  3. панель СБ КА «ГЛОНАСС» — на основе кремния и арсенид-галлия;
  4. панель СБ КА «Orbcomm» — на основе арсенид-галлия;
  5. модули СБ КА.

НПП «Квант»

Московское предприятие выпускает солнечные панели под маркировкой КСМ и характеристиками:

  • мощность: от 80 до 210 Вт;
  • напряжение: от 21,5 до 37,8 В;
  • габариты: от 1210х547 до 1586х806 мм, при толщине 35 мм;
  • масса: от 8,5 до 16,0 кг.

ООО «Витасвет»

Московское предприятие выпускает панели на основе кремниевых пластин типа мульти-кристалл, с
маркировкой SSI-LS200 P3, которые различаются по:

  • мощности: от225 до 240 Вт;
  • напряжению: от 29,6 от 30,2 В;
  • КПД: от 13,5 до 14,5 %.

ООО «Солнечный ветер»

Краснодарское предприятие выпускает панели на основе монокристаллического кремния.

  • Мощность: от 5,0 до 200 Вт;
  • Напряжение: 12/20/24 В;
  • КПД: от 12 до 20 %.

Из приведенных выше параметров и характеристик видно, что отечественные производители солнечных батарей успешно работают на рынке по производству техники, связанной с получением электрической энергии из возобновляемых источников.

Импортные производители солнечных панелей

Зарубежными конкурентами отечественных производителей в сегменте солнечных панелей и модулей являются:

Китайские компании:


И еще целый ряд компаний различных по мощности и количеству выпускаемой продукции.

Компании из США:

  1. «First Solar» — выпускает только тонкопленочные панели;
  2. «Sun Power» — одним из направлений деятельности этой компании является производство солнечных модулей.

Компании из Японии:

  1. «Sanyo» — первая компания, принявшая соглашение об ответственности производителей солнечных батарей;
  2. «Kyocera Solar» — выпускаемые агрегаты не нуждаются в дополнительном обслуживании. Надежность работы гарантирована производителем.

Немецкая «Sharp» — качественный продукт этой компании завоевал отечественный рынок.

Канадская компания «Canadian Solar» выпускает широкий ассортимент продукции, имеет производственные мощности в Канаде и Китае.

Норвежская компания «Renewable Energy Corporation» производит поликристаллический кремний и пластины на его основе. Производство переведено в Сингапур.

Как видно из перечня, наибольшее количество компаний, занимающихся производством солнечных панелей, находится в Китае. Это обусловлено более низкой себестоимостью продукции, выпускаемой в этой стране, что соответственно повышает ее конкурентоспособность. По этой же причине компании, расположенные в странах Европы и Америки, переводят свои производственные мощности в Китай и прочие страны Юго-восточной Азии.

Средние цены на продукцию

В настоящее время не составит труда найти организацию, которая занимается реализацией солнечных панелей. Это может быть крупная торговая сеть в области электротехники, дилеры крупных фирм производителей этой продукции, или интернет-магазины, в которых также можно выбрать необходимый товар.

Когда все критерии выбора панелей определены, остается решить, в каком ценовом сегменте следует выбрать интересующий нас товар. Изначально понятно, что покупая отечественные панели, можно планировать затраты. В варианте использования зарубежных аналогов, их стоимость привязана к курсу доллара, поэтому цена может меняться, что затрудняет долгосрочное планирование.

Как уже было написано выше, солнечные панели российских компаний, в зависимости от мощности и вида фото-элементов, распределяются в диапазоне от 2000,00 до 30000,00 рублей. Аналогичные по характеристикам панели конкурентов будут стоить от 2000,00 до 50000,00 рублей.

Подводя итог, можно сказать, что за альтернативными источниками электрической энергии будущее, а разнообразие продукции, и постоянно продолжающийся поиск новых материалов и технологий, позволяют выбрать солнечную панель требуемых параметров и характеристик.

Использование солнечной радиации для выработки электричества – самое перспективное направление среди многих альтернативных источников. Учитывая регулярно возрастающую цену на достаточно дорогую электроэнергию, многие предприятия и жители России заинтересованы в приобретении солнечных панелей и электростанций, в том числе продуктов отечественного производителя, выпускающего качественный и недорогой товар.

Солнечные батареи, собранные на российских предприятиях, в сравнении с аналогичной зарубежной продукцией обладают следующими преимуществами :

  1. Оснащены антибликовым покрытием, позволяющим иметь повышенный КПД.
  2. Работают в широком диапазоне температур – от -50 до 70 о С.
  3. Способны выдержать удар и механическое воздействие большой силы.
  4. Полноценно работают даже в пасмурную и дождливую погоду.
  5. Стоимость продукции относительно зарубежных аналогов значительно ниже.

Недостатки российских солнечных панелей являются следствием отсутствия государственной поддержки данной отрасли и не отлаженностью процесса производства, из-за чего в ряде случаев проявляются недостатки в качестве сборки, количестве и ассортименте выпускаемой продукции.

Российские модули отличаются повышенной надежностью, что достигается применением закаленного стекла, а для предотвращения деформации – металлических каркасов. Аморфным модулям механические факторы не страшны, а благодаря своим физическим свойствам, их допустимо сворачивать в рулон и использовать в ситуациях повышенной сложности.

Подробнее про это

Российские производители солнечных панелей

В России основную часть всех солнечных модулей производят следующие заводы:

ООО Хевел , находящийся в Новочеркасске. Производит тонкопленочные гибридные и промышленных нужд. Выпускаемая продукция:

  • Модули низкого и высокого напряжения HEVEL Pramac P-серии (Р7, P7L, P7F, P7LF). Изготавливаются по тонкопленочной микроморфной технологии, способны преобразовывать в электричество видимый и инфракрасный спектр света. Цена 7500 руб.;
  • Тонкопленочные модули (110-135 Вт), изготавливаются на основе технологии аморфного кремния, за счет чего повышен КПД модулей в сравнении с изделиями предыдущих поколений. Цена 7400-7600 руб.

Читайте так же: Делаем солнечные батареи для дома своими руками

ЗАО Телеком-СТВ , расположенный в Зеленограде, производит легкие небольшие бытовые модули на основе поли- и монокристаллических элементов и гибридные батареи следующих модификаций:

  • Монокристаллические с мощностью 18-27 Вт;
  • Монокристаллические повышенной эффективности 5-250 Вт;
  • Мультикристаллические 5-25 Вт;
  • Складные – 120 и 180 Вт;
  • Электростанции морского применения 16-215 Вт;
  • Зарядные устройства 12 Вт;
  • Мини модули 0,019-0,215 Вт.

Цена на панели составляет 1,3 $/Втпик, или от 280 руб. за модуль.

Видео с рассказом о компании и ее возможностях

ОАО Сатурн , г. Краснодар выпускает панели и электростанции на основе арсенида галлия, которые применяются в космической промышленности. Среди моделей выпускаемых солнечных батарей можно отметить следующие:

  • Панель СБ КА «Спектр-Р» (Si);
  • СБ КА «Orbcomm» (GaAs);
  • СБ КА «Ресурс ДК» (Si);
  • Модуль СБ КА «ГЛОНАСС» (Si и GaAs).


из г. Рязань производит батареи, отличающиеся мощностью, надежностью, и высоким качеством исполнения, которые подойдут для энергообеспечения дома, зарядки портативных приборов и других задач. Ассортимент выпускаемых солнечных панелей следующий:

  • Модуль Тип RZMP-220 – применяется в автономных зарядках. Ассортимент моделей: RZMP-240 (250 – 275). Цена от 14500 руб.;
  • Тип RZMP-130 – используется в автономных системах с током 12 В, и любым контроллером зарядки. Ассортимент моделей: RZMP-130 (135 – 165). Цена 14600-18400 руб.;
  • Тип RZMP «Фотоэлемент Р» – используется в сетевых и автономных устройствах с контроллерами зарядки. Ассортимент моделей: RZMP-280 (285, 290). Цена от 19 тыс. руб.
Солнечные батареи, изготовленные на основе технологии аморфного кремния, более эффективны по сравнению с монокристаллическим, что заметно проявляется при недостатке освещения, достигая разницы в производительности до 30%, но почти не реагируют на изменение освещенности, проявляя «инерционность» при восстановлении освещения, продолжая функционировать с такой же мощностью.

Зарубежные фирмы-производители

Самыми крупными фирмами, выпускающими солнечные панели и электростанции, выступают следующие фирмы:

  1. Motech – тайванская компания, имеющая производственные площади в США в виде дочерней фирмы AES Polysilicon. Начав производство с ячеек для батарей, постепенно нарастила виды выпускаемой продукции до поликристаллического кремния, пластин и готовых панелей.
  2. Yingli Green Energy – старая, вертикально интегрированная китайская компания, которая, благодаря наличию производственных мощностей по выработке поликристаллического кремния, входит в число фирм, выпускающих весь ассортимент панелей с наименьшей себестоимостью. Последней серией выпускаемых батарей стали панели «Panda».
  3. Suntech – крупная китайская фирма, внедряющая с 2010 г. вертикальную интеграцию для сокращения издержек производства и сокращения себестоимости продукции.
  4. Trina Solar – китайская фирма, производящая качественные панели, и реализующая их по минимальной цене, благодаря невысокой себестоимости продукции.
  5. Hanwha Solar One – корейский производитель. Изготавливает качественные солнечные электростанции на заводах, расположенных в Китае.
  6. Canadian Solar – фирма со штаб-квартирой в Канаде, а производством в Онтарио и Китае. Отличается большим ассортиментом и объемами производимой продукции.
  7. Solarworld – крупный немецкий производитель, нацеленный на рынки Европы и США, и не имеющий своих заводов в азиатском регионе.
  8. First Solar – американский производитель тонкопленочных панелей на основе теллур-кадмиевой технологии, которая отличается самой низкой себестоимостью батарей относительно остальных конкурентов.
  9. Sunpower – производит на территории США наиболее эффективные солнечные электростанции, но во время кризиса испытывает спад производства из-за высоких затрат.
  10. Renewable Energy Corporation – норвежская компания, выпускающая модули и поликристаллический кремний. Из-за продолжающегося кризиса перенесла производственные мощности в Сингапур.
  11. Panasonic/Sanyo производит высокоэффективную продукцию, нацеленную на рынки Японии и США.

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.

Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

На сегодняшний день из всех известных человечеству источников альтернативной энергии наиболее популярными являются солнечные панели, батареи и прочие генераторы на основе гелиоэнергии. Учитывая текущую стоимость расходов на энергоресурсы, многие интересуются, где приобрести солнечные панели для своего дома, каковы цены на них и есть ли готовые решения. И поскольку рост курса валюты прямо отражается на платежной способности населения, все больше граждан стремятся узнать побольше о панелях российского производства.

Что такое солнечные панели и как их используют для дома

Несмотря на то что данному виду энергоснабжения домов уже более 30 лет, не так много специалистов в этой области. Почему использование солнечных панелей для частного дома так выгодно? Ответ прост: платить надо только за оборудование и установку, впоследствии энергоноситель бесплатен! В таких странах, как КНР, Соединенные Штаты, Франция, Италия и Германия, до 30 % населения устанавливает на крышу батареи, чтобы пользоваться миллиардами неиссякаемых киловатт солнечной энергии. Если это бесплатно, в чем секрет?

Принцип работы батареи следующий: представим себе полупроводники из кристаллов (например, из кремния), которые преобразовывают кванты света в составляющие электрического тока. Панель содержит сотни тысяч таких кристаллов. В зависимости от требуемой мощности площадь такого покрытия составляет от пары квадратных сантиметров (вспомним калькулятор) до сотен квадратных метров – например, для орбитальных станций.

Несмотря на кажущуюся простоту устройств, их использование на территории России очень ограничено – климатом, погодой, временем года и суток. Плюс к тому, чтобы система подавала ток в сеть, необходимо приобрести:

  • аккумулятор, который будет накапливать энергию на случай перепадов напряжения;
  • инвертор, который будет переводить постоянный ток в переменный;
  • систему, контролирующую заряд аккумулятора.

Кратко о потреблении

Среднестатистическая семья из 4 человек потребляет 250–300 кВт в месяц. Солнечные модули для бытового пользования дают в среднем 100 Вт с 1 кв. м в сутки (в ясную погоду). Для того чтобы питать полностью дом, нужно установить минимум 30, в идеале 40 секций, что обойдется не менее чем в 10 000 у. е. При этом крыша должна быть ориентирована на южную сторону, а количество солнечных дней в месяц в среднем не должно быть не меньше 18–20. Ниже приведена карта солнечных дней.

Вывод: солнечные панели хороши в качестве резервного источника электрической энергии. Кроме того, нужно знать, как их подобрать, чтобы мощности хватало для обеспечения бытовых нужд. Зато, вне зависимости от аварий, ваш дом всегда будет снабжен электричеством.

Если обратить внимание на крыши многих частных домов или небольших компаний, то там можно увидеть солнечные батареи. Подорожание энергоносителей приводит к тому, что люди начинают искать альтернативные источники. В этих условиях спрос на солнечные батареи растет день ото дня.

Потенциальные возможности

В условиях растущей популярности альтернативных источников энергии целесообразно вовремя занять нишу в рынке. Для этого необходимо для начала приобрести оборудование для производства солнечных батарей. Его можно купить как в странах Европы, США и СНГ, так и в Китае.

В зависимости от спроса на эти изделия в вашем регионе или в местах, куда вы сможете поставлять произведенный товар, необходимо определиться с тем, на что будет ориентировано ваше производство. В настоящее время на рынке можно найти панели, предназначенные для различных сфер использования.

Это могут быть как легкие переносные варианты, которые берут с собой в туристические походы, стационарные модули, подходящие для установки на крышах помещений и жилых домов, или мощные панели, которые используют в качестве небольших электростанций.

Рабочие линии

Если у вас есть помещение для изготовления, тогда можно задуматься и о том, чтобы купить оборудование для производства солнечных батарей. Также не стоит забывать, что при их изготовлении у вас должны всегда быть в достаточном количестве необходимые расходные комплектующие.

Так, в список необходимого оборудования попадают станки, которые нарезают лазером материал для панелей на квадраты, сортируют их, ламинируют, вставляют в рамы и соединяют их вместе. Помимо этого, для производства необходимы машины, которые занимаются замешиванием специального клея, обрезают пленку под панелью и их края. Не обойтись при изготовлении и без столов, на которых необходимо будет корректировать углы, вставлять в панели провода и формировать их, и тележек, предназначенных для их перемещения и прессования.

Каждый станок для производства солнечных батарей является незаменимым компонентом линии по их изготовлению. Поэтому, прежде чем начинать заказывать материалы для производства, подсчитайте общую стоимость оборудования и проанализируйте, можете ли вы позволить себе такие траты. Правда, при этом стоит учесть, что при наличии каналов сбыта, они достаточно быстро окупаются.

Процесс изготовления

Если вы видели солнечные батареи раньше только на картинках и плохо себе представляете, как идет их создание, тогда лучше найти человека, которому известна технология производства солнечных батарей. Если говорить о ней в общих чертах, то надо знать, что она состоит из ряда этапов.

Начинается изготовление с проверки и подготовки к работе поступивших в цех материалов. После нарезки и сортировки фотоэлектрических преобразователей (ФЭП) они поступают на оборудование, на котором проходит процесс припайки к контактам панелей специальных луженных шинок из меди. Лишь после этого начинается процесс соединения всех ФЭП в цепочки необходимой длины.

Следующим этапом является создание сэндвича, который состоит из собранных в матрицу преобразователей, стекла, двух слоев герметизирующей пленки и тыльной стороны панели. Именно на этой стадии оборудование для производства солнечных батарей формирует схему модуля, тут же определяется его рабочее напряжение.

Собранную конструкцию проверяют и отправляют на ламинирование – герметизацию, которая проходит под давлением при высокой температуре. Лишь после этого на подготовленный полуфабрикат крепят раму и монтируют специальную коммутационную коробку.

Тестирование продукции

Встретить на рынке брак среди подобных товаров практически невозможно, ведь каждая панель после сборки попадает в специальный цех тестирования.

Именно там их проверяют на возможность пробоя напряжением. После этого они сортируются, пакуются и отправляются в продажу, в магазинах можно встреть как небольшие переносные варианты, так и солнечные батареи для дома.

Производство этих видов практически ничем не отличается.

Конечно, безукоснительно соблюдать все этапы может позволить себе только крупный производитель с большими объемами производства и достаточным количеством сотрудников. Новым мелким изготовителям тяжело конкурировать с гигантами, ведь единовременное создание больших партий позволяет уменьшить себестоимость продукции.